Spark has become synonymous with big data processing, however the majority of data scientists still build models using single machine libraries. This talk will explore the multitude of ways Spark can be used to scale machine learning applications. In particular, we will guide you through distributed solutions for training and inference, distributed hyperparameter search, deployment issues, and new features for Machine Learning in Apache Spark 3.0. Niall Turbitt and Holly Smith combine their years of experience working with Spark to summarize best practices for scaling ML solutions.