SlideShare a Scribd company logo
Massive Data
Processing in Adobe
using Delta Lake
Yeshwanth Vijayakumar
Sr. Engineering Manager/Architect @ Adobe
Agenda
§ Introduction
§ What are we storing?
§ Data Representation and
Nested Schema Evolution
§ Writer Worries and How to
Wipe them Away
§ Staging Tables FTW
§ Datalake Replication Lag
Tracking
§ Performance Time!
Unified Profile Data Ingestion
Unified Profile
Experience Data Model
Adobe Campaign
AEM
Adobe Analytics
Adobe
AdCloud
Change Feed Streaming
Stats Generation
Single Tenant
Multi Tenant
Linking Identities
Data Layout At a Glance
An Idea about how the graph linkages are stored
primaryId relatedIds field1 field2 field1000
123 123 a b c
456 456 d e f
123 123 d e l
789 789,101 x y z
101 789,101 x u p
Conditions
• primaryId does not change
• relatedIds can change
New Record comes in
Indicating a new linkage, causing a change in graph membership
primaryId relatedId field1 field2 field1000
103 103,789,101 q w r
789 103,789,101 x y z
101 103,789,101 x y z
primaryId relatedId field1 field2 field1000
103 103,789,101 q w r
New Record comes in linking 103 with 789 and 101
Causes a cascading change in rows of 789 and 101
Main Access Pattern
Query 1
Query 2
Query 3
Query 1000
Multiple Queries over 1 consolidated row
Complexities?
• Nested Fields
• a.b.c.d[*].e nested hairiness!
• Arrays!
• MapType
• Every Tenant has a different Schema!
• Schema evolves constantly
• Fields can get deleted, updated.
• Multiple Sources
• Streaming
• Batch
Scale?
• Tenants have 10+ Billions of rows
• PBs of data
• Million RPS peak across the system
• Triggers multiple downstream applications
• Segmentation
• Activation
What is DeltaLake?
From delta.io : Delta Lake is an open-source project that enables building a Lakehouse architecture
on top of existing storage systems such as S3, ADLS, GCS, and HDFS.
ACID
Transactions
Time Travel
(data
versioning)
Uses Parquet
Underneath
Schema
Enforcement
and Schema
Evolution
Audit History
Updates and
Deletes Support
Key Features
Delta lake in Practice
UPSERT
SQL Compatible
Writer Worries and How to Wipe them Away
• Concurrency Conflicts
• Column size
• When individual column data exceeds 2GB, we see degradation in writes or OOM
• Update frequency
• Too frequent updates cause underlying filestore metadata issues.
• This is because every transacation on an individual parquet causes CoW,
• More updates => more rewrites on HDFS
• Too Many small files !!!
CDC (existing)
Batch Ingestion / Streaming
Ingestion /
API based Ingest
Mutation Apps
CosmosDB
CDC
1. Send Request to
Cosmos
2.Ack
3.Emit CDC
Consumed by
• Stats
• Edge
• etc
Dataflow with DeltaLake
primary
Id
relatedId
field
1
field2 field1000
103 103,789,101 q w r
789 103,789,101 x y z
101 103,789,101 x y z
Cosmos
DB
primaryId relatedId field1 field1000
103 103,789,101 q r
primaryId relatedId jsonString
103 103,789,101 <jsonStr>
789 103,789,101
<jsonStr>
101 103,789,101 <jsonStr>
Staging Table
Change Feed CDC
Raw Table (per tenant)
Check for Work every
X minutes
UPSERT/DELETE into
Raw Table
Fetch
Records
to process
APPEND only!
CDC
Dumper
Backfill
Long Running
Streaming
Application
Processor
Partitioned by tenant and 15 min time intervals
TenantLock in Redis
Staging Tables FTW
Fan-In pattern vs Fan-out
• Multiple Source Writers Issue Solved
• By centralizing all reads from CDC, since ALL writes generate a CDC
• Staging Table in APPEND ONLY mode
• No conflicts while writing to it
• Filter out. Bad data > thresholds before making it to Raw
Table
• Batch Writes by reading larger blocks of data from Staging
Table
• Since it acts time aware message buffer
Staging Table Logical View
ProgressMap
Why choose JSON String format?
§ We are doing a lazy Schema on-read approach.
▪ Yes. this is an anti-pattern.
§ Nested Schema Evolution was not supported on update in delta in 2020
▪ Supported with latest version
§ We want to apply conflict resolution before upsert-ing
▪ Eg. resolveAndMerge(newData, oldData)
▪ UDF’s are strict on types, with the plethora of difference schemas , it is crazy to manage UDF per
org in Multi tenant fashion
▪ Now we just have simple JSON merge udfs
▪ We use json-iter which is very efficient in loading partial bits of json and in manipulating them.
§ Don’t you lose predicate pushdown?
▪ We have pulled out all main push-down filters to individual columns
▪ Eg. timestamp, recordType, id, etc.
▪ Profile workloads are mainly scan based since we can run 1000’s of queries at a single time.
▪ Reading the whole JSON string from datalake is much faster and cheaper than reading from
Cosmos for 20% of all fields.
Schema On Read is more
future safe approach for
raw data
§ Wrangling Spark Structs is not
user friendly
§ JSON schema is messy
▪ Crazy nesting
▪ Add maps to the equation, just the
schema will be in MBs
§ Schema on Read using Json-iter
means we can read what we
need on a row by row basis
§ Materialized Views WILL have
structs!
Partition Scheme of Raw records
• RawRecords Delta Table
• recordType
• sourceId
• timestamp (key-value records will use DEFAULT value)
z-order on primaryId
z-order - Colocate column information in the same set of files using locality-preserving space-filling curves
Massive Data Processing in Adobe Using Delta Lake
Replication Lag – 2 types
• CDC Lag from Kafka
• Tells us how much more work we need to do to catch up to write to Staging
Table
• How we track Lag on a per tenant basis
• We track Max(TimeStamp) in CDC per org
• We track Max(TSKEY) processed in Processor
• Difference gives us rough lag of replication
Merge/UPSERT Performance
Action: UPSERT CDC stage into fragment
Time Taken
170 K CDC Records – Maps to 100k
Rows in Raw Table
15 seconds
1.7 Million CDC Records – Maps to 1
Million Rows in Raw Table
61 seconds
Live Traffic Usecase: How long does it take X CDC messages to get upserted into Raw Table
Job Performance Time!
Hot Store (NoSQL Store) Delta Lake
Size of Data 1 TB 64 GB
Number of Partitions 80 189
Job Cores Used 112 112
Job Runtime 3 hours 25 mins
TakeAways
• Scan IO speed from datalake >>> Read from Hot Store
• Reasonably fast eventually consistent replication within
minutes
• More partitions means better Spark executor core utilization
• Potential to aggressively TTL data in hot store
• More downstream materialization !!!
• Incremental Computation Framework thanks to Staging tables!
Feedback
Your feedback is important to us.
Don’t forget to rate and review the sessions.
Ad

More Related Content

What's hot (20)

Simplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Simplify CDC Pipeline with Spark Streaming SQL and Delta LakeSimplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Simplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Databricks
 
Data Engineer's Lunch #83: Strategies for Migration to Apache Iceberg
Data Engineer's Lunch #83: Strategies for Migration to Apache IcebergData Engineer's Lunch #83: Strategies for Migration to Apache Iceberg
Data Engineer's Lunch #83: Strategies for Migration to Apache Iceberg
Anant Corporation
 
Zero to Snowflake Presentation
Zero to Snowflake Presentation Zero to Snowflake Presentation
Zero to Snowflake Presentation
Brett VanderPlaats
 
iceberg introduction.pptx
iceberg introduction.pptxiceberg introduction.pptx
iceberg introduction.pptx
Dori Waldman
 
Architect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh ArchitectureArchitect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh Architecture
Databricks
 
Building Robust Production Data Pipelines with Databricks Delta
Building Robust Production Data Pipelines with Databricks DeltaBuilding Robust Production Data Pipelines with Databricks Delta
Building Robust Production Data Pipelines with Databricks Delta
Databricks
 
Getting Started with Databricks SQL Analytics
Getting Started with Databricks SQL AnalyticsGetting Started with Databricks SQL Analytics
Getting Started with Databricks SQL Analytics
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Building Lakehouses on Delta Lake with SQL Analytics Primer
Building Lakehouses on Delta Lake with SQL Analytics PrimerBuilding Lakehouses on Delta Lake with SQL Analytics Primer
Building Lakehouses on Delta Lake with SQL Analytics Primer
Databricks
 
Large Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured StreamingLarge Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured Streaming
Databricks
 
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
DataScienceConferenc1
 
Real-time Analytics with Trino and Apache Pinot
Real-time Analytics with Trino and Apache PinotReal-time Analytics with Trino and Apache Pinot
Real-time Analytics with Trino and Apache Pinot
Xiang Fu
 
Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)
James Serra
 
The delta architecture
The delta architectureThe delta architecture
The delta architecture
Prakash Chockalingam
 
Common Strategies for Improving Performance on Your Delta Lakehouse
Common Strategies for Improving Performance on Your Delta LakehouseCommon Strategies for Improving Performance on Your Delta Lakehouse
Common Strategies for Improving Performance on Your Delta Lakehouse
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Fine Tuning and Enhancing Performance of Apache Spark JobsFine Tuning and Enhancing Performance of Apache Spark Jobs
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Databricks
 
Introduction to Azure Databricks
Introduction to Azure DatabricksIntroduction to Azure Databricks
Introduction to Azure Databricks
James Serra
 
Simplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Simplify CDC Pipeline with Spark Streaming SQL and Delta LakeSimplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Simplify CDC Pipeline with Spark Streaming SQL and Delta Lake
Databricks
 
Data Engineer's Lunch #83: Strategies for Migration to Apache Iceberg
Data Engineer's Lunch #83: Strategies for Migration to Apache IcebergData Engineer's Lunch #83: Strategies for Migration to Apache Iceberg
Data Engineer's Lunch #83: Strategies for Migration to Apache Iceberg
Anant Corporation
 
Zero to Snowflake Presentation
Zero to Snowflake Presentation Zero to Snowflake Presentation
Zero to Snowflake Presentation
Brett VanderPlaats
 
iceberg introduction.pptx
iceberg introduction.pptxiceberg introduction.pptx
iceberg introduction.pptx
Dori Waldman
 
Architect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh ArchitectureArchitect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh Architecture
Databricks
 
Building Robust Production Data Pipelines with Databricks Delta
Building Robust Production Data Pipelines with Databricks DeltaBuilding Robust Production Data Pipelines with Databricks Delta
Building Robust Production Data Pipelines with Databricks Delta
Databricks
 
Getting Started with Databricks SQL Analytics
Getting Started with Databricks SQL AnalyticsGetting Started with Databricks SQL Analytics
Getting Started with Databricks SQL Analytics
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Building Lakehouses on Delta Lake with SQL Analytics Primer
Building Lakehouses on Delta Lake with SQL Analytics PrimerBuilding Lakehouses on Delta Lake with SQL Analytics Primer
Building Lakehouses on Delta Lake with SQL Analytics Primer
Databricks
 
Large Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured StreamingLarge Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured Streaming
Databricks
 
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
DataScienceConferenc1
 
Real-time Analytics with Trino and Apache Pinot
Real-time Analytics with Trino and Apache PinotReal-time Analytics with Trino and Apache Pinot
Real-time Analytics with Trino and Apache Pinot
Xiang Fu
 
Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)
James Serra
 
Common Strategies for Improving Performance on Your Delta Lakehouse
Common Strategies for Improving Performance on Your Delta LakehouseCommon Strategies for Improving Performance on Your Delta Lakehouse
Common Strategies for Improving Performance on Your Delta Lakehouse
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Fine Tuning and Enhancing Performance of Apache Spark JobsFine Tuning and Enhancing Performance of Apache Spark Jobs
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Databricks
 
Introduction to Azure Databricks
Introduction to Azure DatabricksIntroduction to Azure Databricks
Introduction to Azure Databricks
James Serra
 

Similar to Massive Data Processing in Adobe Using Delta Lake (20)

The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
Databricks
 
System Design.pdf
System Design.pdfSystem Design.pdf
System Design.pdf
JitendraYadav351971
 
Understanding and building big data Architectures - NoSQL
Understanding and building big data Architectures - NoSQLUnderstanding and building big data Architectures - NoSQL
Understanding and building big data Architectures - NoSQL
Hyderabad Scalability Meetup
 
NewSQL - Deliverance from BASE and back to SQL and ACID
NewSQL - Deliverance from BASE and back to SQL and ACIDNewSQL - Deliverance from BASE and back to SQL and ACID
NewSQL - Deliverance from BASE and back to SQL and ACID
Tony Rogerson
 
Healthcare Claim Reimbursement using Apache Spark
Healthcare Claim Reimbursement using Apache SparkHealthcare Claim Reimbursement using Apache Spark
Healthcare Claim Reimbursement using Apache Spark
Databricks
 
New Developments in Spark
New Developments in SparkNew Developments in Spark
New Developments in Spark
Databricks
 
Pulsar in the Lakehouse: Overview of Apache Pulsar and Delta Lake Connector -...
Pulsar in the Lakehouse: Overview of Apache Pulsar and Delta Lake Connector -...Pulsar in the Lakehouse: Overview of Apache Pulsar and Delta Lake Connector -...
Pulsar in the Lakehouse: Overview of Apache Pulsar and Delta Lake Connector -...
StreamNative
 
Building and deploying large scale real time news system with my sql and dist...
Building and deploying large scale real time news system with my sql and dist...Building and deploying large scale real time news system with my sql and dist...
Building and deploying large scale real time news system with my sql and dist...
Tao Cheng
 
Building a high-performance data lake analytics engine at Alibaba Cloud with ...
Building a high-performance data lake analytics engine at Alibaba Cloud with ...Building a high-performance data lake analytics engine at Alibaba Cloud with ...
Building a high-performance data lake analytics engine at Alibaba Cloud with ...
Alluxio, Inc.
 
What's New in Apache Hive
What's New in Apache HiveWhat's New in Apache Hive
What's New in Apache Hive
DataWorks Summit
 
Silk_SQLSaturdayBatonRouge_kgorman_2024.pptx
Silk_SQLSaturdayBatonRouge_kgorman_2024.pptxSilk_SQLSaturdayBatonRouge_kgorman_2024.pptx
Silk_SQLSaturdayBatonRouge_kgorman_2024.pptx
Kellyn Pot'Vin-Gorman
 
Running Production CDC Ingestion Pipelines With Balaji Varadarajan and Pritam...
Running Production CDC Ingestion Pipelines With Balaji Varadarajan and Pritam...Running Production CDC Ingestion Pipelines With Balaji Varadarajan and Pritam...
Running Production CDC Ingestion Pipelines With Balaji Varadarajan and Pritam...
HostedbyConfluent
 
TenMax Data Pipeline Experience Sharing
TenMax Data Pipeline Experience SharingTenMax Data Pipeline Experience Sharing
TenMax Data Pipeline Experience Sharing
Chen-en Lu
 
SQL Server It Just Runs Faster
SQL Server It Just Runs FasterSQL Server It Just Runs Faster
SQL Server It Just Runs Faster
Bob Ward
 
Re-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series DatabaseRe-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series Database
All Things Open
 
Cassandra Community Webinar: From Mongo to Cassandra, Architectural Lessons
Cassandra Community Webinar: From Mongo to Cassandra, Architectural LessonsCassandra Community Webinar: From Mongo to Cassandra, Architectural Lessons
Cassandra Community Webinar: From Mongo to Cassandra, Architectural Lessons
DataStax
 
2017 AWS DB Day | Amazon Redshift 자세히 살펴보기
2017 AWS DB Day | Amazon Redshift 자세히 살펴보기2017 AWS DB Day | Amazon Redshift 자세히 살펴보기
2017 AWS DB Day | Amazon Redshift 자세히 살펴보기
Amazon Web Services Korea
 
Case Study: Elasticsearch Ingest Using StreamSets @ Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets @ Cisco IntercloudCase Study: Elasticsearch Ingest Using StreamSets @ Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets @ Cisco Intercloud
Streamsets Inc.
 
Case Study: Elasticsearch Ingest Using StreamSets at Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets at Cisco IntercloudCase Study: Elasticsearch Ingest Using StreamSets at Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets at Cisco Intercloud
Rick Bilodeau
 
Azure Cosmos DB - Technical Deep Dive
Azure Cosmos DB - Technical Deep DiveAzure Cosmos DB - Technical Deep Dive
Azure Cosmos DB - Technical Deep Dive
Andre Essing
 
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
Databricks
 
Understanding and building big data Architectures - NoSQL
Understanding and building big data Architectures - NoSQLUnderstanding and building big data Architectures - NoSQL
Understanding and building big data Architectures - NoSQL
Hyderabad Scalability Meetup
 
NewSQL - Deliverance from BASE and back to SQL and ACID
NewSQL - Deliverance from BASE and back to SQL and ACIDNewSQL - Deliverance from BASE and back to SQL and ACID
NewSQL - Deliverance from BASE and back to SQL and ACID
Tony Rogerson
 
Healthcare Claim Reimbursement using Apache Spark
Healthcare Claim Reimbursement using Apache SparkHealthcare Claim Reimbursement using Apache Spark
Healthcare Claim Reimbursement using Apache Spark
Databricks
 
New Developments in Spark
New Developments in SparkNew Developments in Spark
New Developments in Spark
Databricks
 
Pulsar in the Lakehouse: Overview of Apache Pulsar and Delta Lake Connector -...
Pulsar in the Lakehouse: Overview of Apache Pulsar and Delta Lake Connector -...Pulsar in the Lakehouse: Overview of Apache Pulsar and Delta Lake Connector -...
Pulsar in the Lakehouse: Overview of Apache Pulsar and Delta Lake Connector -...
StreamNative
 
Building and deploying large scale real time news system with my sql and dist...
Building and deploying large scale real time news system with my sql and dist...Building and deploying large scale real time news system with my sql and dist...
Building and deploying large scale real time news system with my sql and dist...
Tao Cheng
 
Building a high-performance data lake analytics engine at Alibaba Cloud with ...
Building a high-performance data lake analytics engine at Alibaba Cloud with ...Building a high-performance data lake analytics engine at Alibaba Cloud with ...
Building a high-performance data lake analytics engine at Alibaba Cloud with ...
Alluxio, Inc.
 
Silk_SQLSaturdayBatonRouge_kgorman_2024.pptx
Silk_SQLSaturdayBatonRouge_kgorman_2024.pptxSilk_SQLSaturdayBatonRouge_kgorman_2024.pptx
Silk_SQLSaturdayBatonRouge_kgorman_2024.pptx
Kellyn Pot'Vin-Gorman
 
Running Production CDC Ingestion Pipelines With Balaji Varadarajan and Pritam...
Running Production CDC Ingestion Pipelines With Balaji Varadarajan and Pritam...Running Production CDC Ingestion Pipelines With Balaji Varadarajan and Pritam...
Running Production CDC Ingestion Pipelines With Balaji Varadarajan and Pritam...
HostedbyConfluent
 
TenMax Data Pipeline Experience Sharing
TenMax Data Pipeline Experience SharingTenMax Data Pipeline Experience Sharing
TenMax Data Pipeline Experience Sharing
Chen-en Lu
 
SQL Server It Just Runs Faster
SQL Server It Just Runs FasterSQL Server It Just Runs Faster
SQL Server It Just Runs Faster
Bob Ward
 
Re-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series DatabaseRe-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series Database
All Things Open
 
Cassandra Community Webinar: From Mongo to Cassandra, Architectural Lessons
Cassandra Community Webinar: From Mongo to Cassandra, Architectural LessonsCassandra Community Webinar: From Mongo to Cassandra, Architectural Lessons
Cassandra Community Webinar: From Mongo to Cassandra, Architectural Lessons
DataStax
 
2017 AWS DB Day | Amazon Redshift 자세히 살펴보기
2017 AWS DB Day | Amazon Redshift 자세히 살펴보기2017 AWS DB Day | Amazon Redshift 자세히 살펴보기
2017 AWS DB Day | Amazon Redshift 자세히 살펴보기
Amazon Web Services Korea
 
Case Study: Elasticsearch Ingest Using StreamSets @ Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets @ Cisco IntercloudCase Study: Elasticsearch Ingest Using StreamSets @ Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets @ Cisco Intercloud
Streamsets Inc.
 
Case Study: Elasticsearch Ingest Using StreamSets at Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets at Cisco IntercloudCase Study: Elasticsearch Ingest Using StreamSets at Cisco Intercloud
Case Study: Elasticsearch Ingest Using StreamSets at Cisco Intercloud
Rick Bilodeau
 
Azure Cosmos DB - Technical Deep Dive
Azure Cosmos DB - Technical Deep DiveAzure Cosmos DB - Technical Deep Dive
Azure Cosmos DB - Technical Deep Dive
Andre Essing
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and QualityJeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Databricks
 
Intuitive & Scalable Hyperparameter Tuning with Apache Spark + Fugue
Intuitive & Scalable Hyperparameter Tuning with Apache Spark + FugueIntuitive & Scalable Hyperparameter Tuning with Apache Spark + Fugue
Intuitive & Scalable Hyperparameter Tuning with Apache Spark + Fugue
Databricks
 
Infrastructure Agnostic Machine Learning Workload Deployment
Infrastructure Agnostic Machine Learning Workload DeploymentInfrastructure Agnostic Machine Learning Workload Deployment
Infrastructure Agnostic Machine Learning Workload Deployment
Databricks
 
Improving Apache Spark for Dynamic Allocation and Spot Instances
Improving Apache Spark for Dynamic Allocation and Spot InstancesImproving Apache Spark for Dynamic Allocation and Spot Instances
Improving Apache Spark for Dynamic Allocation and Spot Instances
Databricks
 
Importance of ML Reproducibility & Applications with MLfLow
Importance of ML Reproducibility & Applications with MLfLowImportance of ML Reproducibility & Applications with MLfLow
Importance of ML Reproducibility & Applications with MLfLow
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and QualityJeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Databricks
 
Intuitive & Scalable Hyperparameter Tuning with Apache Spark + Fugue
Intuitive & Scalable Hyperparameter Tuning with Apache Spark + FugueIntuitive & Scalable Hyperparameter Tuning with Apache Spark + Fugue
Intuitive & Scalable Hyperparameter Tuning with Apache Spark + Fugue
Databricks
 
Infrastructure Agnostic Machine Learning Workload Deployment
Infrastructure Agnostic Machine Learning Workload DeploymentInfrastructure Agnostic Machine Learning Workload Deployment
Infrastructure Agnostic Machine Learning Workload Deployment
Databricks
 
Improving Apache Spark for Dynamic Allocation and Spot Instances
Improving Apache Spark for Dynamic Allocation and Spot InstancesImproving Apache Spark for Dynamic Allocation and Spot Instances
Improving Apache Spark for Dynamic Allocation and Spot Instances
Databricks
 
Importance of ML Reproducibility & Applications with MLfLow
Importance of ML Reproducibility & Applications with MLfLowImportance of ML Reproducibility & Applications with MLfLow
Importance of ML Reproducibility & Applications with MLfLow
Databricks
 
Ad

Recently uploaded (20)

TOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdf
TOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdfTOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdf
TOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdf
NhiV747372
 
hersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distributionhersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distribution
hershtara1
 
Controlling Financial Processes at a Municipality
Controlling Financial Processes at a MunicipalityControlling Financial Processes at a Municipality
Controlling Financial Processes at a Municipality
Process mining Evangelist
 
Chapter 6-3 Introducingthe Concepts .pptx
Chapter 6-3 Introducingthe Concepts .pptxChapter 6-3 Introducingthe Concepts .pptx
Chapter 6-3 Introducingthe Concepts .pptx
PermissionTafadzwaCh
 
AI ------------------------------ W1L2.pptx
AI ------------------------------ W1L2.pptxAI ------------------------------ W1L2.pptx
AI ------------------------------ W1L2.pptx
AyeshaJalil6
 
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfj
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfjOral Malodor.pptx jsjshdhushehsidjjeiejdhfj
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfj
maitripatel5301
 
Fundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithmsFundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithms
priyaiyerkbcsc
 
Agricultural_regionalisation_in_India(Final).pptx
Agricultural_regionalisation_in_India(Final).pptxAgricultural_regionalisation_in_India(Final).pptx
Agricultural_regionalisation_in_India(Final).pptx
mostafaahammed38
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
Taqyea
 
Understanding Complex Development Processes
Understanding Complex Development ProcessesUnderstanding Complex Development Processes
Understanding Complex Development Processes
Process mining Evangelist
 
Process Mining as Enabler for Digital Transformations
Process Mining as Enabler for Digital TransformationsProcess Mining as Enabler for Digital Transformations
Process Mining as Enabler for Digital Transformations
Process mining Evangelist
 
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
bastakwyry
 
What is ETL? Difference between ETL and ELT?.pdf
What is ETL? Difference between ETL and ELT?.pdfWhat is ETL? Difference between ETL and ELT?.pdf
What is ETL? Difference between ETL and ELT?.pdf
SaikatBasu37
 
Ann Naser Nabil- Data Scientist Portfolio.pdf
Ann Naser Nabil- Data Scientist Portfolio.pdfAnn Naser Nabil- Data Scientist Portfolio.pdf
Ann Naser Nabil- Data Scientist Portfolio.pdf
আন্ নাসের নাবিল
 
AWS RDS Presentation to make concepts easy.pptx
AWS RDS Presentation to make concepts easy.pptxAWS RDS Presentation to make concepts easy.pptx
AWS RDS Presentation to make concepts easy.pptx
bharatkumarbhojwani
 
Adopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use caseAdopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use case
Process mining Evangelist
 
CS-404 COA COURSE FILE JAN JUN 2025.docx
CS-404 COA COURSE FILE JAN JUN 2025.docxCS-404 COA COURSE FILE JAN JUN 2025.docx
CS-404 COA COURSE FILE JAN JUN 2025.docx
nidarizvitit
 
Voice Control robotic arm hggyghghgjgjhgjg
Voice Control robotic arm hggyghghgjgjhgjgVoice Control robotic arm hggyghghgjgjhgjg
Voice Control robotic arm hggyghghgjgjhgjg
4mg22ec401
 
Feature Engineering for Electronic Health Record Systems
Feature Engineering for Electronic Health Record SystemsFeature Engineering for Electronic Health Record Systems
Feature Engineering for Electronic Health Record Systems
Process mining Evangelist
 
TOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdf
TOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdfTOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdf
TOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdf
NhiV747372
 
hersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distributionhersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distribution
hershtara1
 
Controlling Financial Processes at a Municipality
Controlling Financial Processes at a MunicipalityControlling Financial Processes at a Municipality
Controlling Financial Processes at a Municipality
Process mining Evangelist
 
Chapter 6-3 Introducingthe Concepts .pptx
Chapter 6-3 Introducingthe Concepts .pptxChapter 6-3 Introducingthe Concepts .pptx
Chapter 6-3 Introducingthe Concepts .pptx
PermissionTafadzwaCh
 
AI ------------------------------ W1L2.pptx
AI ------------------------------ W1L2.pptxAI ------------------------------ W1L2.pptx
AI ------------------------------ W1L2.pptx
AyeshaJalil6
 
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfj
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfjOral Malodor.pptx jsjshdhushehsidjjeiejdhfj
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfj
maitripatel5301
 
Fundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithmsFundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithms
priyaiyerkbcsc
 
Agricultural_regionalisation_in_India(Final).pptx
Agricultural_regionalisation_in_India(Final).pptxAgricultural_regionalisation_in_India(Final).pptx
Agricultural_regionalisation_in_India(Final).pptx
mostafaahammed38
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
Taqyea
 
Process Mining as Enabler for Digital Transformations
Process Mining as Enabler for Digital TransformationsProcess Mining as Enabler for Digital Transformations
Process Mining as Enabler for Digital Transformations
Process mining Evangelist
 
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
bastakwyry
 
What is ETL? Difference between ETL and ELT?.pdf
What is ETL? Difference between ETL and ELT?.pdfWhat is ETL? Difference between ETL and ELT?.pdf
What is ETL? Difference between ETL and ELT?.pdf
SaikatBasu37
 
AWS RDS Presentation to make concepts easy.pptx
AWS RDS Presentation to make concepts easy.pptxAWS RDS Presentation to make concepts easy.pptx
AWS RDS Presentation to make concepts easy.pptx
bharatkumarbhojwani
 
Adopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use caseAdopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use case
Process mining Evangelist
 
CS-404 COA COURSE FILE JAN JUN 2025.docx
CS-404 COA COURSE FILE JAN JUN 2025.docxCS-404 COA COURSE FILE JAN JUN 2025.docx
CS-404 COA COURSE FILE JAN JUN 2025.docx
nidarizvitit
 
Voice Control robotic arm hggyghghgjgjhgjg
Voice Control robotic arm hggyghghgjgjhgjgVoice Control robotic arm hggyghghgjgjhgjg
Voice Control robotic arm hggyghghgjgjhgjg
4mg22ec401
 
Feature Engineering for Electronic Health Record Systems
Feature Engineering for Electronic Health Record SystemsFeature Engineering for Electronic Health Record Systems
Feature Engineering for Electronic Health Record Systems
Process mining Evangelist
 

Massive Data Processing in Adobe Using Delta Lake

  • 1. Massive Data Processing in Adobe using Delta Lake Yeshwanth Vijayakumar Sr. Engineering Manager/Architect @ Adobe
  • 2. Agenda § Introduction § What are we storing? § Data Representation and Nested Schema Evolution § Writer Worries and How to Wipe them Away § Staging Tables FTW § Datalake Replication Lag Tracking § Performance Time!
  • 3. Unified Profile Data Ingestion Unified Profile Experience Data Model Adobe Campaign AEM Adobe Analytics Adobe AdCloud Change Feed Streaming Stats Generation Single Tenant Multi Tenant
  • 5. Data Layout At a Glance An Idea about how the graph linkages are stored primaryId relatedIds field1 field2 field1000 123 123 a b c 456 456 d e f 123 123 d e l 789 789,101 x y z 101 789,101 x u p Conditions • primaryId does not change • relatedIds can change
  • 6. New Record comes in Indicating a new linkage, causing a change in graph membership primaryId relatedId field1 field2 field1000 103 103,789,101 q w r 789 103,789,101 x y z 101 103,789,101 x y z primaryId relatedId field1 field2 field1000 103 103,789,101 q w r New Record comes in linking 103 with 789 and 101 Causes a cascading change in rows of 789 and 101
  • 7. Main Access Pattern Query 1 Query 2 Query 3 Query 1000 Multiple Queries over 1 consolidated row
  • 8. Complexities? • Nested Fields • a.b.c.d[*].e nested hairiness! • Arrays! • MapType • Every Tenant has a different Schema! • Schema evolves constantly • Fields can get deleted, updated. • Multiple Sources • Streaming • Batch
  • 9. Scale? • Tenants have 10+ Billions of rows • PBs of data • Million RPS peak across the system • Triggers multiple downstream applications • Segmentation • Activation
  • 10. What is DeltaLake? From delta.io : Delta Lake is an open-source project that enables building a Lakehouse architecture on top of existing storage systems such as S3, ADLS, GCS, and HDFS. ACID Transactions Time Travel (data versioning) Uses Parquet Underneath Schema Enforcement and Schema Evolution Audit History Updates and Deletes Support Key Features
  • 11. Delta lake in Practice UPSERT SQL Compatible
  • 12. Writer Worries and How to Wipe them Away • Concurrency Conflicts • Column size • When individual column data exceeds 2GB, we see degradation in writes or OOM • Update frequency • Too frequent updates cause underlying filestore metadata issues. • This is because every transacation on an individual parquet causes CoW, • More updates => more rewrites on HDFS • Too Many small files !!!
  • 13. CDC (existing) Batch Ingestion / Streaming Ingestion / API based Ingest Mutation Apps CosmosDB CDC 1. Send Request to Cosmos 2.Ack 3.Emit CDC Consumed by • Stats • Edge • etc
  • 14. Dataflow with DeltaLake primary Id relatedId field 1 field2 field1000 103 103,789,101 q w r 789 103,789,101 x y z 101 103,789,101 x y z Cosmos DB primaryId relatedId field1 field1000 103 103,789,101 q r primaryId relatedId jsonString 103 103,789,101 <jsonStr> 789 103,789,101 <jsonStr> 101 103,789,101 <jsonStr> Staging Table Change Feed CDC Raw Table (per tenant) Check for Work every X minutes UPSERT/DELETE into Raw Table Fetch Records to process APPEND only! CDC Dumper Backfill Long Running Streaming Application Processor Partitioned by tenant and 15 min time intervals TenantLock in Redis
  • 15. Staging Tables FTW Fan-In pattern vs Fan-out • Multiple Source Writers Issue Solved • By centralizing all reads from CDC, since ALL writes generate a CDC • Staging Table in APPEND ONLY mode • No conflicts while writing to it • Filter out. Bad data > thresholds before making it to Raw Table • Batch Writes by reading larger blocks of data from Staging Table • Since it acts time aware message buffer
  • 16. Staging Table Logical View ProgressMap
  • 17. Why choose JSON String format? § We are doing a lazy Schema on-read approach. ▪ Yes. this is an anti-pattern. § Nested Schema Evolution was not supported on update in delta in 2020 ▪ Supported with latest version § We want to apply conflict resolution before upsert-ing ▪ Eg. resolveAndMerge(newData, oldData) ▪ UDF’s are strict on types, with the plethora of difference schemas , it is crazy to manage UDF per org in Multi tenant fashion ▪ Now we just have simple JSON merge udfs ▪ We use json-iter which is very efficient in loading partial bits of json and in manipulating them. § Don’t you lose predicate pushdown? ▪ We have pulled out all main push-down filters to individual columns ▪ Eg. timestamp, recordType, id, etc. ▪ Profile workloads are mainly scan based since we can run 1000’s of queries at a single time. ▪ Reading the whole JSON string from datalake is much faster and cheaper than reading from Cosmos for 20% of all fields.
  • 18. Schema On Read is more future safe approach for raw data § Wrangling Spark Structs is not user friendly § JSON schema is messy ▪ Crazy nesting ▪ Add maps to the equation, just the schema will be in MBs § Schema on Read using Json-iter means we can read what we need on a row by row basis § Materialized Views WILL have structs!
  • 19. Partition Scheme of Raw records • RawRecords Delta Table • recordType • sourceId • timestamp (key-value records will use DEFAULT value) z-order on primaryId z-order - Colocate column information in the same set of files using locality-preserving space-filling curves
  • 21. Replication Lag – 2 types • CDC Lag from Kafka • Tells us how much more work we need to do to catch up to write to Staging Table • How we track Lag on a per tenant basis • We track Max(TimeStamp) in CDC per org • We track Max(TSKEY) processed in Processor • Difference gives us rough lag of replication
  • 22. Merge/UPSERT Performance Action: UPSERT CDC stage into fragment Time Taken 170 K CDC Records – Maps to 100k Rows in Raw Table 15 seconds 1.7 Million CDC Records – Maps to 1 Million Rows in Raw Table 61 seconds Live Traffic Usecase: How long does it take X CDC messages to get upserted into Raw Table
  • 23. Job Performance Time! Hot Store (NoSQL Store) Delta Lake Size of Data 1 TB 64 GB Number of Partitions 80 189 Job Cores Used 112 112 Job Runtime 3 hours 25 mins
  • 24. TakeAways • Scan IO speed from datalake >>> Read from Hot Store • Reasonably fast eventually consistent replication within minutes • More partitions means better Spark executor core utilization • Potential to aggressively TTL data in hot store • More downstream materialization !!! • Incremental Computation Framework thanks to Staging tables!
  • 25. Feedback Your feedback is important to us. Don’t forget to rate and review the sessions.
  翻译: