This document discusses kernel-based mean shift algorithm for real-time object tracking. It presents the following: 1) The algorithm uses kernel density estimation to calculate the similarity between a target model and candidate windows, using the Bhattacharyya coefficient. 2) It can successfully track objects moving uniformly at slow speeds but struggles with fast or non-uniform motion, or changes in scale. 3) The algorithm was tested on video streams and could track objects moving slowly but failed for fast or irregular motion. Adaptive target windows are needed to handle changes in scale.