Abstract Several applications of nonlinear principal component analysis (NPCA) have appeared recently in process monitoring and fault diagnosis. In this paper a new approach is proposed for fault detection based on principal curves and genetic algorithms. The principal curve is a generation of linear principal component (PCA) introduced by Hastie as a parametric curve passes satisfactorily through the middle of data. The existing principal curves algorithms employ the first component of the data as an initial estimation of principal curve. However the dependence on initial line leads to a lack of flexibility and the final curve is only satisfactory for specific problems. In this paper we extend this work in two ways. First, we propose a new method based on genetic algorithms to find the principal curve. Here, lines are fitted and connected to form polygonal lines (PL). Second, potential application of principal curves is discussed. An example is used to illustrate fault diagnosis of nonlinear process using the proposed approach. Index Terms: Principal curve, Genetic Algorithm, Nonlinear principal component analysis, Fault detection.