Despite the surge of deep learning, deploying the deep learning-based pedestrian detection into the real system faces hurdles, mainly due to the huge resource usages. The classical feature-based detection system still becomes feasible option. There have been many efforts to improve the performance of pedestrian detection system. Among many feature set, Histogram of Oriented Gradient seems to be very effective for person detection. In this research, various machine learning algorithms are investigated for person detection. Different machine learning algorithms are evaluated to obtain the optimal accuracy and speed of the system.