This document summarizes research on using convolutional neural networks (CNNs) to detect brain tumors from MRI images. It begins with an abstract describing how earlier tumor detection was done manually by doctors, which took more time and was sometimes inaccurate. CNN models provide quicker and more precise results. The document then reviews several existing techniques for brain tumor segmentation and classification, noting their advantages and limitations. It proposes using a CNN-based classifier to overcome these limitations by comparing trained and test data to get the best results. Key steps in tumor detection using image processing techniques are described as image pre-processing, segmentation, feature extraction, and classification.