This document summarizes a review on using convolutional neural networks and support vector machines for multiclass brain tumor detection. It begins by introducing the importance of accurate brain tumor diagnosis and segmentation. It then describes the proposed 5-stage approach: 1) applying linear contrast stretching for edge detection, 2) developing a CNN architecture for segmentation, 3) using transfer learning from MobileNetV2 for feature extraction, 4) selecting optimal features using entropy control, and 5) classifying tumors into categories using multi-class SVM. Related works applying deep learning and machine learning methods for brain tumor detection, segmentation and classification are also summarized.