This document presents research on using a convolutional neural network (CNN) model for the detection and classification of brain tumors from MRI images. The CNN model improves the accuracy of tumor detection and can serve as a useful tool for physicians. The researchers trained and tested several CNN architectures, including CNN, ResNet50, MobileNetV2, and VGG19 on an MRI brain image database. Their proposed model uses a modified Residual U-Net architecture with residual blocks and attention gates to better segment tumors and extract local features from MRI images. Evaluation results found their model achieved better accuracy than existing methods like U-Net and CNN for brain tumor segmentation tasks.