This document discusses a semantic-based document clustering approach using lexical chains. It proposes using WordNet to perform word sense disambiguation on documents to extract core semantic features represented as lexical chains. Lexical chains identify semantically related words in a text based on relations like synonyms and hypernyms. Documents are then clustered based on the lexical chains extracted. The approach aims to overcome issues in traditional clustering like synonyms and polysemy by incorporating semantic information from WordNet ontology. It is argued that identifying themes based on disambiguated semantic features extracted via lexical chains can improve text clustering performance compared to bag-of-words models. An evaluation of the approach showed better results when using a threshold of 50% for lexical chain selection.