This paper proposes a multi-document summarization system that uses bisect k-means clustering, an optimal merge function, and a neural network. The system first preprocesses input documents through stemming and removing stop words. It then applies bisect k-means clustering to group similar sentences. The clusters are merged using an optimal merge function to find important keywords. The NEWSUM algorithm is used to generate a primary summary for each keyword. A neural network trained on sentence classifications is then used to classify sentences in the primary summary as positive or negative. Only positively classified sentences are included in the final summary to improve accuracy. The system aims to generate a concise and accurate summary in a short period of time from multiple documents on a given topic.