Spark is an ETL and Data Processing engine especially suited for big data. Most of the time an organization has different teams working on different languages, frameworks and libraries, which needs to be integrated in the ETL Pipelines or for general data processing. For example, a Spark ETL job may be written in Scala by data engineering team, but there is a need to integrate a machine learning solution written in python/R developed by Data Science team. These kinds of solutions are not very straightforward to integrate with spark engine, and it required great amount of collaboration between different teams, hence increasing overall project time and cost. Furthermore, these solutions will keep on changing/upgrading with time using latest versions of the technologies and with improved design and implementation, especially in Machine Learning domain where ML models/algorithms keep on improving with new data and new approaches. And so there is significant downtime involved in integrating the these upgraded version.