SlideShare a Scribd company logo
Machine Learning Data Lineage with MLflow and Delta Lake
Machine Learning Data Lineage
with and Delta Lake
Richard Zang, Senior Software Engineer, Databricks
Denny Lee, Staff Developer Advocate, Databricks
Richard Zang
Senior Software Engineer at
Databricks
Previously
▪ Senior Software Engineer at
Hortonworks
▪ Senior Software Engineer at
Opentext Analytics
Denny Lee
Staff Developer Advocate at
Databricks
Previously
▪ Senior Director of Data Science
Engineering at Concur
▪ Principal Program Manager at at
Microsoft
▪ Project Isotope (Azure
HDInsight)
▪ SQLCAT DW/BI Lead
Intro
Machine Learning
Development is Complex
ML Lifecycle
7
Delta
Data Prep
Training
Deploy
Raw Data
μ
λ θ Tuning
Scale
μ
λ θ Tuning
Scale
Scale
Scale
Model
Exchange
Governance
Tracking
Record and query
experiments: code,
metrics, parameters,
artifacts, models
Models
General model
format
that standardizes
deployment options
Model Registry
Centralized and
collaborative
model lifecycle
management
Projects
Packaging format
for reproducible runs
on any compute
platform
Components
Model Lifecycle Data Lineage
Staging Production Archived
Data Scientists Deployment Engineers
v1
v2
v3
Models Tracking
Flavor 2Flavor 1
Model Registry
In-Line Code
Containers
Batch & Stream
Scoring
Cloud Inference
Services
OSS Serving
Solutions
Serving
Parameter
s
Metrics Artifacts
ModelsMetadata
v0
v1
Challenges in Model Management
When you’re working on one ML app alone, keeping the model in
files is manageable
MODEL
DEVELOPER
classifier_v1.h5
classifier_v2.h5
classifier_v3_sept_19.h5
classifier_v3_new.h5
…
Challenges in Model Management
When you work in a large organization with many models,
management becomes a big challenge:
• Where can I find the best version of this model?
• How was this model trained?
• How can I track docs for each model?
• How can I review models?
MODEL
DEVELOPER
REVIEWER
MODEL
USER
???
MLflow Model Registry
Repository of named, versioned
models with comments & tags
Track each model’s stage: dev,
staging, production, archived
Easily load a specific version
MLflow Model Registry
Model Registry
MODEL
DEVELOPER
DOWNSTREAM
USERS
AUTOMATED JOBS
REST SERVING
REVIEWERS,
CI/CD TOOLS
A Data Engineer’s Dream...
Data Lake
CSV,
JSON, TXT…
Kinesis
AI & Reporting
Process data continuously and incrementally as new data arrive in a cost
efficient way without having to choose between batch or streaming
Delta On Disk
my_table/
_delta_log/
00000.json
00001.json
date=2019-01-01/
file-1.parquet
Transaction Log
Table Versions
(Optional) Partition Directories
Data Files
Implementing Atomicity
Changes to the table
are stored as
ordered, atomic units
called commits
Add 1.parquet
Add 2.parquet
Remove 1.parquet
Remove 2.parquet
Add 3.parquet
000000.json
000001.json
…
Solving Conflicts Optimistically
1. Record start version
2. Record reads/writes
3. Attempt commit
4. If someone else wins,
check if anything you
read has changed.
5. Try again.
000000.json
000001.json
000002.json
User 1 User 2
Write: Append
Read: Schema
Write: Append
Read: Schema
Feedback
Your feedback is important to us.
Don’t forget to rate and
review the sessions.
Machine Learning Data Lineage with MLflow and Delta Lake
Ad

More Related Content

What's hot (20)

Achieving Lakehouse Models with Spark 3.0
Achieving Lakehouse Models with Spark 3.0Achieving Lakehouse Models with Spark 3.0
Achieving Lakehouse Models with Spark 3.0
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
Databricks
 
Building End-to-End Delta Pipelines on GCP
Building End-to-End Delta Pipelines on GCPBuilding End-to-End Delta Pipelines on GCP
Building End-to-End Delta Pipelines on GCP
Databricks
 
Azure data platform overview
Azure data platform overviewAzure data platform overview
Azure data platform overview
James Serra
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Delta lake and the delta architecture
Delta lake and the delta architectureDelta lake and the delta architecture
Delta lake and the delta architecture
Adam Doyle
 
Productionzing ML Model Using MLflow Model Serving
Productionzing ML Model Using MLflow Model ServingProductionzing ML Model Using MLflow Model Serving
Productionzing ML Model Using MLflow Model Serving
Databricks
 
Build Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks StreamingBuild Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks Streaming
Databricks
 
Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)
James Serra
 
Introducing Azure SQL Data Warehouse
Introducing Azure SQL Data WarehouseIntroducing Azure SQL Data Warehouse
Introducing Azure SQL Data Warehouse
James Serra
 
Migrating on premises workload to azure sql database
Migrating on premises workload to azure sql databaseMigrating on premises workload to azure sql database
Migrating on premises workload to azure sql database
PARIKSHIT SAVJANI
 
Azure Synapse Analytics
Azure Synapse AnalyticsAzure Synapse Analytics
Azure Synapse Analytics
WinWire Technologies Inc
 
Introduction to Azure Data Lake
Introduction to Azure Data LakeIntroduction to Azure Data Lake
Introduction to Azure Data Lake
Antonios Chatzipavlis
 
Large Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured StreamingLarge Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured Streaming
Databricks
 
Introduction to Azure Data Factory
Introduction to Azure Data FactoryIntroduction to Azure Data Factory
Introduction to Azure Data Factory
Slava Kokaev
 
From Data Warehouse to Lakehouse
From Data Warehouse to LakehouseFrom Data Warehouse to Lakehouse
From Data Warehouse to Lakehouse
Modern Data Stack France
 
Databricks Delta Lake and Its Benefits
Databricks Delta Lake and Its BenefitsDatabricks Delta Lake and Its Benefits
Databricks Delta Lake and Its Benefits
Databricks
 
Introduction to Data Engineering
Introduction to Data EngineeringIntroduction to Data Engineering
Introduction to Data Engineering
Durga Gadiraju
 
Apache Iceberg Presentation for the St. Louis Big Data IDEA
Apache Iceberg Presentation for the St. Louis Big Data IDEAApache Iceberg Presentation for the St. Louis Big Data IDEA
Apache Iceberg Presentation for the St. Louis Big Data IDEA
Adam Doyle
 
Achieving Lakehouse Models with Spark 3.0
Achieving Lakehouse Models with Spark 3.0Achieving Lakehouse Models with Spark 3.0
Achieving Lakehouse Models with Spark 3.0
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
Databricks
 
Building End-to-End Delta Pipelines on GCP
Building End-to-End Delta Pipelines on GCPBuilding End-to-End Delta Pipelines on GCP
Building End-to-End Delta Pipelines on GCP
Databricks
 
Azure data platform overview
Azure data platform overviewAzure data platform overview
Azure data platform overview
James Serra
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Delta lake and the delta architecture
Delta lake and the delta architectureDelta lake and the delta architecture
Delta lake and the delta architecture
Adam Doyle
 
Productionzing ML Model Using MLflow Model Serving
Productionzing ML Model Using MLflow Model ServingProductionzing ML Model Using MLflow Model Serving
Productionzing ML Model Using MLflow Model Serving
Databricks
 
Build Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks StreamingBuild Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks Streaming
Databricks
 
Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)
James Serra
 
Introducing Azure SQL Data Warehouse
Introducing Azure SQL Data WarehouseIntroducing Azure SQL Data Warehouse
Introducing Azure SQL Data Warehouse
James Serra
 
Migrating on premises workload to azure sql database
Migrating on premises workload to azure sql databaseMigrating on premises workload to azure sql database
Migrating on premises workload to azure sql database
PARIKSHIT SAVJANI
 
Large Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured StreamingLarge Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured Streaming
Databricks
 
Introduction to Azure Data Factory
Introduction to Azure Data FactoryIntroduction to Azure Data Factory
Introduction to Azure Data Factory
Slava Kokaev
 
Databricks Delta Lake and Its Benefits
Databricks Delta Lake and Its BenefitsDatabricks Delta Lake and Its Benefits
Databricks Delta Lake and Its Benefits
Databricks
 
Introduction to Data Engineering
Introduction to Data EngineeringIntroduction to Data Engineering
Introduction to Data Engineering
Durga Gadiraju
 
Apache Iceberg Presentation for the St. Louis Big Data IDEA
Apache Iceberg Presentation for the St. Louis Big Data IDEAApache Iceberg Presentation for the St. Louis Big Data IDEA
Apache Iceberg Presentation for the St. Louis Big Data IDEA
Adam Doyle
 

Similar to Machine Learning Data Lineage with MLflow and Delta Lake (20)

MLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
MLOps Virtual Event | Building Machine Learning Platforms for the Full LifecycleMLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
MLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
Databricks
 
Machine Learning Models in Production
Machine Learning Models in ProductionMachine Learning Models in Production
Machine Learning Models in Production
DataWorks Summit
 
Lviv Data Science Club (Sergiy Lunyakin)
Lviv Data Science Club (Sergiy Lunyakin)Lviv Data Science Club (Sergiy Lunyakin)
Lviv Data Science Club (Sergiy Lunyakin)
Lviv Startup Club
 
20160317 - PAZUR - PowerBI & R
20160317  - PAZUR - PowerBI & R20160317  - PAZUR - PowerBI & R
20160317 - PAZUR - PowerBI & R
Łukasz Grala
 
An introduction to QuerySurge webinar
An introduction to QuerySurge webinarAn introduction to QuerySurge webinar
An introduction to QuerySurge webinar
RTTS
 
NLS Banking Solutions - NQuest BI
NLS Banking Solutions - NQuest BINLS Banking Solutions - NQuest BI
NLS Banking Solutions - NQuest BI
karthik nagarajan
 
[DSC Europe 23] Petar Zecevic - ML in Production on Databricks
[DSC Europe 23] Petar Zecevic - ML in Production on Databricks[DSC Europe 23] Petar Zecevic - ML in Production on Databricks
[DSC Europe 23] Petar Zecevic - ML in Production on Databricks
DataScienceConferenc1
 
Introduction to SQL Server Analysis services 2008
Introduction to SQL Server Analysis services 2008Introduction to SQL Server Analysis services 2008
Introduction to SQL Server Analysis services 2008
Tobias Koprowski
 
Python + MPP Database = Large Scale AI/ML Projects in Production Faster
Python + MPP Database = Large Scale AI/ML Projects in Production FasterPython + MPP Database = Large Scale AI/ML Projects in Production Faster
Python + MPP Database = Large Scale AI/ML Projects in Production Faster
Paige_Roberts
 
Serverless machine learning architectures at Helixa
Serverless machine learning architectures at HelixaServerless machine learning architectures at Helixa
Serverless machine learning architectures at Helixa
Data Science Milan
 
Analytix Mapping Manager Datasheet
Analytix Mapping Manager DatasheetAnalytix Mapping Manager Datasheet
Analytix Mapping Manager Datasheet
AnalytixDataServices
 
OFF SHORE RECRUITER TRAINING
OFF SHORE RECRUITER TRAININGOFF SHORE RECRUITER TRAINING
OFF SHORE RECRUITER TRAINING
satish_kumar646
 
DevOps for Machine Learning overview en-us
DevOps for Machine Learning overview en-usDevOps for Machine Learning overview en-us
DevOps for Machine Learning overview en-us
eltonrodriguez11
 
Analyti x mapping manager product overview presentation
Analyti x mapping manager product overview presentationAnalyti x mapping manager product overview presentation
Analyti x mapping manager product overview presentation
AnalytixDataServices
 
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
Alex Ivy
 
How does Microsoft solve Big Data?
How does Microsoft solve Big Data?How does Microsoft solve Big Data?
How does Microsoft solve Big Data?
James Serra
 
DataMass Summit - Machine Learning for Big Data in SQL Server
DataMass Summit - Machine Learning for Big Data  in SQL ServerDataMass Summit - Machine Learning for Big Data  in SQL Server
DataMass Summit - Machine Learning for Big Data in SQL Server
Łukasz Grala
 
What’s new in SQL Server 2017
What’s new in SQL Server 2017What’s new in SQL Server 2017
What’s new in SQL Server 2017
James Serra
 
Taming the shrew Power BI
Taming the shrew Power BITaming the shrew Power BI
Taming the shrew Power BI
Kellyn Pot'Vin-Gorman
 
Day 1 - Technical Bootcamp azure synapse analytics
Day 1 - Technical Bootcamp azure synapse analyticsDay 1 - Technical Bootcamp azure synapse analytics
Day 1 - Technical Bootcamp azure synapse analytics
Armand272
 
MLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
MLOps Virtual Event | Building Machine Learning Platforms for the Full LifecycleMLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
MLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
Databricks
 
Machine Learning Models in Production
Machine Learning Models in ProductionMachine Learning Models in Production
Machine Learning Models in Production
DataWorks Summit
 
Lviv Data Science Club (Sergiy Lunyakin)
Lviv Data Science Club (Sergiy Lunyakin)Lviv Data Science Club (Sergiy Lunyakin)
Lviv Data Science Club (Sergiy Lunyakin)
Lviv Startup Club
 
20160317 - PAZUR - PowerBI & R
20160317  - PAZUR - PowerBI & R20160317  - PAZUR - PowerBI & R
20160317 - PAZUR - PowerBI & R
Łukasz Grala
 
An introduction to QuerySurge webinar
An introduction to QuerySurge webinarAn introduction to QuerySurge webinar
An introduction to QuerySurge webinar
RTTS
 
NLS Banking Solutions - NQuest BI
NLS Banking Solutions - NQuest BINLS Banking Solutions - NQuest BI
NLS Banking Solutions - NQuest BI
karthik nagarajan
 
[DSC Europe 23] Petar Zecevic - ML in Production on Databricks
[DSC Europe 23] Petar Zecevic - ML in Production on Databricks[DSC Europe 23] Petar Zecevic - ML in Production on Databricks
[DSC Europe 23] Petar Zecevic - ML in Production on Databricks
DataScienceConferenc1
 
Introduction to SQL Server Analysis services 2008
Introduction to SQL Server Analysis services 2008Introduction to SQL Server Analysis services 2008
Introduction to SQL Server Analysis services 2008
Tobias Koprowski
 
Python + MPP Database = Large Scale AI/ML Projects in Production Faster
Python + MPP Database = Large Scale AI/ML Projects in Production FasterPython + MPP Database = Large Scale AI/ML Projects in Production Faster
Python + MPP Database = Large Scale AI/ML Projects in Production Faster
Paige_Roberts
 
Serverless machine learning architectures at Helixa
Serverless machine learning architectures at HelixaServerless machine learning architectures at Helixa
Serverless machine learning architectures at Helixa
Data Science Milan
 
Analytix Mapping Manager Datasheet
Analytix Mapping Manager DatasheetAnalytix Mapping Manager Datasheet
Analytix Mapping Manager Datasheet
AnalytixDataServices
 
OFF SHORE RECRUITER TRAINING
OFF SHORE RECRUITER TRAININGOFF SHORE RECRUITER TRAINING
OFF SHORE RECRUITER TRAINING
satish_kumar646
 
DevOps for Machine Learning overview en-us
DevOps for Machine Learning overview en-usDevOps for Machine Learning overview en-us
DevOps for Machine Learning overview en-us
eltonrodriguez11
 
Analyti x mapping manager product overview presentation
Analyti x mapping manager product overview presentationAnalyti x mapping manager product overview presentation
Analyti x mapping manager product overview presentation
AnalytixDataServices
 
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
Alex Ivy
 
How does Microsoft solve Big Data?
How does Microsoft solve Big Data?How does Microsoft solve Big Data?
How does Microsoft solve Big Data?
James Serra
 
DataMass Summit - Machine Learning for Big Data in SQL Server
DataMass Summit - Machine Learning for Big Data  in SQL ServerDataMass Summit - Machine Learning for Big Data  in SQL Server
DataMass Summit - Machine Learning for Big Data in SQL Server
Łukasz Grala
 
What’s new in SQL Server 2017
What’s new in SQL Server 2017What’s new in SQL Server 2017
What’s new in SQL Server 2017
James Serra
 
Day 1 - Technical Bootcamp azure synapse analytics
Day 1 - Technical Bootcamp azure synapse analyticsDay 1 - Technical Bootcamp azure synapse analytics
Day 1 - Technical Bootcamp azure synapse analytics
Armand272
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and QualityJeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and QualityJeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Databricks
 
Ad

Recently uploaded (20)

Process Mining at Deutsche Bank - Journey
Process Mining at Deutsche Bank - JourneyProcess Mining at Deutsche Bank - Journey
Process Mining at Deutsche Bank - Journey
Process mining Evangelist
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
bastakwyry
 
CS-404 COA COURSE FILE JAN JUN 2025.docx
CS-404 COA COURSE FILE JAN JUN 2025.docxCS-404 COA COURSE FILE JAN JUN 2025.docx
CS-404 COA COURSE FILE JAN JUN 2025.docx
nidarizvitit
 
Ann Naser Nabil- Data Scientist Portfolio.pdf
Ann Naser Nabil- Data Scientist Portfolio.pdfAnn Naser Nabil- Data Scientist Portfolio.pdf
Ann Naser Nabil- Data Scientist Portfolio.pdf
আন্ নাসের নাবিল
 
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
Taqyea
 
Lagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdfLagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdf
benuju2016
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
HershAggregator (2).pdf musicretaildistribution
HershAggregator (2).pdf musicretaildistributionHershAggregator (2).pdf musicretaildistribution
HershAggregator (2).pdf musicretaildistribution
hershtara1
 
Understanding Complex Development Processes
Understanding Complex Development ProcessesUnderstanding Complex Development Processes
Understanding Complex Development Processes
Process mining Evangelist
 
real illuminati Uganda agent 0782561496/0756664682
real illuminati Uganda agent 0782561496/0756664682real illuminati Uganda agent 0782561496/0756664682
real illuminati Uganda agent 0782561496/0756664682
way to join real illuminati Agent In Kampala Call/WhatsApp+256782561496/0756664682
 
Process Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBSProcess Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBS
Process mining Evangelist
 
Sets theories and applications that can used to imporve knowledge
Sets theories and applications that can used to imporve knowledgeSets theories and applications that can used to imporve knowledge
Sets theories and applications that can used to imporve knowledge
saumyasl2020
 
AWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdfAWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdf
philsparkshome
 
Voice Control robotic arm hggyghghgjgjhgjg
Voice Control robotic arm hggyghghgjgjhgjgVoice Control robotic arm hggyghghgjgjhgjg
Voice Control robotic arm hggyghghgjgjhgjg
4mg22ec401
 
Mining a Global Trade Process with Data Science - Microsoft
Mining a Global Trade Process with Data Science - MicrosoftMining a Global Trade Process with Data Science - Microsoft
Mining a Global Trade Process with Data Science - Microsoft
Process mining Evangelist
 
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfj
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfjOral Malodor.pptx jsjshdhushehsidjjeiejdhfj
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfj
maitripatel5301
 
50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd
emir73065
 
Analysis of Billboards hot 100 toop five hit makers on the chart.docx
Analysis of Billboards hot 100 toop five hit makers on the chart.docxAnalysis of Billboards hot 100 toop five hit makers on the chart.docx
Analysis of Billboards hot 100 toop five hit makers on the chart.docx
hershtara1
 
Fundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithmsFundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithms
priyaiyerkbcsc
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
bastakwyry
 
CS-404 COA COURSE FILE JAN JUN 2025.docx
CS-404 COA COURSE FILE JAN JUN 2025.docxCS-404 COA COURSE FILE JAN JUN 2025.docx
CS-404 COA COURSE FILE JAN JUN 2025.docx
nidarizvitit
 
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
Taqyea
 
Lagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdfLagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdf
benuju2016
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
HershAggregator (2).pdf musicretaildistribution
HershAggregator (2).pdf musicretaildistributionHershAggregator (2).pdf musicretaildistribution
HershAggregator (2).pdf musicretaildistribution
hershtara1
 
Process Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBSProcess Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBS
Process mining Evangelist
 
Sets theories and applications that can used to imporve knowledge
Sets theories and applications that can used to imporve knowledgeSets theories and applications that can used to imporve knowledge
Sets theories and applications that can used to imporve knowledge
saumyasl2020
 
AWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdfAWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdf
philsparkshome
 
Voice Control robotic arm hggyghghgjgjhgjg
Voice Control robotic arm hggyghghgjgjhgjgVoice Control robotic arm hggyghghgjgjhgjg
Voice Control robotic arm hggyghghgjgjhgjg
4mg22ec401
 
Mining a Global Trade Process with Data Science - Microsoft
Mining a Global Trade Process with Data Science - MicrosoftMining a Global Trade Process with Data Science - Microsoft
Mining a Global Trade Process with Data Science - Microsoft
Process mining Evangelist
 
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfj
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfjOral Malodor.pptx jsjshdhushehsidjjeiejdhfj
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfj
maitripatel5301
 
50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd
emir73065
 
Analysis of Billboards hot 100 toop five hit makers on the chart.docx
Analysis of Billboards hot 100 toop five hit makers on the chart.docxAnalysis of Billboards hot 100 toop five hit makers on the chart.docx
Analysis of Billboards hot 100 toop five hit makers on the chart.docx
hershtara1
 
Fundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithmsFundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithms
priyaiyerkbcsc
 

Machine Learning Data Lineage with MLflow and Delta Lake

  • 2. Machine Learning Data Lineage with and Delta Lake Richard Zang, Senior Software Engineer, Databricks Denny Lee, Staff Developer Advocate, Databricks
  • 3. Richard Zang Senior Software Engineer at Databricks Previously ▪ Senior Software Engineer at Hortonworks ▪ Senior Software Engineer at Opentext Analytics
  • 4. Denny Lee Staff Developer Advocate at Databricks Previously ▪ Senior Director of Data Science Engineering at Concur ▪ Principal Program Manager at at Microsoft ▪ Project Isotope (Azure HDInsight) ▪ SQLCAT DW/BI Lead
  • 7. ML Lifecycle 7 Delta Data Prep Training Deploy Raw Data μ λ θ Tuning Scale μ λ θ Tuning Scale Scale Scale Model Exchange Governance
  • 8. Tracking Record and query experiments: code, metrics, parameters, artifacts, models Models General model format that standardizes deployment options Model Registry Centralized and collaborative model lifecycle management Projects Packaging format for reproducible runs on any compute platform Components
  • 9. Model Lifecycle Data Lineage Staging Production Archived Data Scientists Deployment Engineers v1 v2 v3 Models Tracking Flavor 2Flavor 1 Model Registry In-Line Code Containers Batch & Stream Scoring Cloud Inference Services OSS Serving Solutions Serving Parameter s Metrics Artifacts ModelsMetadata v0 v1
  • 10. Challenges in Model Management When you’re working on one ML app alone, keeping the model in files is manageable MODEL DEVELOPER classifier_v1.h5 classifier_v2.h5 classifier_v3_sept_19.h5 classifier_v3_new.h5 …
  • 11. Challenges in Model Management When you work in a large organization with many models, management becomes a big challenge: • Where can I find the best version of this model? • How was this model trained? • How can I track docs for each model? • How can I review models? MODEL DEVELOPER REVIEWER MODEL USER ???
  • 12. MLflow Model Registry Repository of named, versioned models with comments & tags Track each model’s stage: dev, staging, production, archived Easily load a specific version
  • 13. MLflow Model Registry Model Registry MODEL DEVELOPER DOWNSTREAM USERS AUTOMATED JOBS REST SERVING REVIEWERS, CI/CD TOOLS
  • 14. A Data Engineer’s Dream... Data Lake CSV, JSON, TXT… Kinesis AI & Reporting Process data continuously and incrementally as new data arrive in a cost efficient way without having to choose between batch or streaming
  • 16. Implementing Atomicity Changes to the table are stored as ordered, atomic units called commits Add 1.parquet Add 2.parquet Remove 1.parquet Remove 2.parquet Add 3.parquet 000000.json 000001.json …
  • 17. Solving Conflicts Optimistically 1. Record start version 2. Record reads/writes 3. Attempt commit 4. If someone else wins, check if anything you read has changed. 5. Try again. 000000.json 000001.json 000002.json User 1 User 2 Write: Append Read: Schema Write: Append Read: Schema
  • 18. Feedback Your feedback is important to us. Don’t forget to rate and review the sessions.
  翻译: