SlideShare a Scribd company logo
Institut
Mines-Telecom
Functional Poisson
convergence
L. Decreusefond
(joint work with M. Schulte, C. Th¨ale)
Stein, Malliavin, Poisson and co.
Motivation : Poisson polytopes
1
2
3
4
5
6
0
1 23456
η ξ(η)
2/25 Institut Mines-Telecom Functional Poisson convergence
Motivation : Poisson polytopes
1
2
3
4
5
6
0
1 23456
η ξ(η)
Question
What happens when the number of points goes to infinity ?
2/25 Institut Mines-Telecom Functional Poisson convergence
Poisson point process
Hypothesis
Points are distributed to a Poisson process of control measure tK
Definition
The number of points is a Poisson rv (t K(Sd−1))
Given the number of points, they are independently drawn
with distribution K
3/25 Institut Mines-Telecom Functional Poisson convergence
Rescaling : γ = 2/(d − 1)
Campbell-Mecke formula
E
x1,··· ,xk ∈ω
(k)
=
f (x) = tk
f (x1, · · · , xk)K(dx1, · · · , dxk)
4/25 Institut Mines-Telecom Functional Poisson convergence
Rescaling : γ = 2/(d − 1)
Campbell-Mecke formula
E
x1,··· ,xk ∈ω
(k)
=
f (x) = tk
f (x1, · · · , xk)K(dx1, · · · , dxk)
Mean number of points (after rescaling)
1
2
E
x=y∈ω
1 tγx−tγy ≤β =
t2
2 Sd−1⊗Sd−1
1 x−y ≤t−γβdxdy
4/25 Institut Mines-Telecom Functional Poisson convergence
Rescaling : γ = 2/(d − 1)
Campbell-Mecke formula
E
x1,··· ,xk ∈ω
(k)
=
f (x) = tk
f (x1, · · · , xk)K(dx1, · · · , dxk)
Mean number of points (after rescaling)
1
2
E
x=y∈ω
1 tγx−tγy ≤β =
t2
2 Sd−1⊗Sd−1
1 x−y ≤t−γβdxdy
Geometry
Vd−1(Sd−1
∩Bd
βt−γ (y)) = κd−1(βt−γ
)d−1
+
(d − 1)κd−1
2
(βt−γ
)d
+O(t−γ(
4/25 Institut Mines-Telecom Functional Poisson convergence
Rescaling : γ = 2/(d − 1)
Campbell-Mecke formula
E
x1,··· ,xk ∈ω
(k)
=
f (x) = tk
f (x1, · · · , xk)K(dx1, · · · , dxk)
Mean number of points (after rescaling)
1
2
E
x=y∈ω
1 tγx−tγy ≤β =
t2
2 Sd−1⊗Sd−1
1 x−y ≤t−γβdxdy
Geometry
Vd−1(Sd−1
∩Bd
βt−γ (y)) = κd−1(βt−γ
)d−1
+
(d − 1)κd−1
2
(βt−γ
)d
+O(t−γ(
4/25 Institut Mines-Telecom Functional Poisson convergence
Schulte-Th¨ale (2012) based on Peccati (2011)
P(t2/(d−1)
Tm(ξ) > x) − e−βx(d−1)
m−1
i=0
(βxd−1)i
i!
≤ Cx t− min(1/2,2/(d−1))
5/25 Institut Mines-Telecom Functional Poisson convergence
Schulte-Th¨ale (2012) based on Peccati (2011)
P(t2/(d−1)
Tm(ξ) > x) − e−βx(d−1)
m−1
i=0
(βxd−1)i
i!
≤ Cx t− min(1/2,2/(d−1))
What about speed of convergence as a process ?
5/25 Institut Mines-Telecom Functional Poisson convergence
Configuration space
Definition
A configuration is a locally finite set of particles on a Polish spaceY
f dω =
x∈ω
f (x)
6/25 Institut Mines-Telecom Functional Poisson convergence
Configuration space
Definition
A configuration is a locally finite set of particles on a Polish spaceY
f dω =
x∈ω
f (x)
Vague topology
ωn
vaguely
−−−−→ ω ⇐⇒ f dωn
n→∞
−−−→ f dω
for all f continuous with compact support from Y to R
6/25 Institut Mines-Telecom Functional Poisson convergence
Configuration space
Definition
A configuration is a locally finite set of particles on a Polish spaceY
f dω =
x∈ω
f (x)
Vague topology
ωn
vaguely
−−−−→ ω ⇐⇒ f dωn
n→∞
−−−→ f dω
for all f continuous with compact support from Y to R
Be careful !
δn
vaguely
−−−−→ ∅
6/25 Institut Mines-Telecom Functional Poisson convergence
Convergence in configuration space
Theorem (DST)
dR(Pn, Q)
n→∞
−−−→ 0 =⇒ Pn
distr.
−−−→ Q
Convergence in NY
7/25 Institut Mines-Telecom Functional Poisson convergence
Example
Our settings
Pt : PPP of intensity tK on C ⊂ X
f : dom f = Ck/Sk −→ Y
Definition
T(
x∈η
δx ) =
(x1,··· ,xk )∈ηk
=
δt2/d f (x1,··· ,xk ) := ξ(η)
f ∗K : image measure of (tK)k by f
M: intensity of the target Poisson PP
Example
8/25 Institut Mines-Telecom Functional Poisson convergence
Main result
Theorem (Two moments are sufficient)
sup
F∈TV–Lip1
E F PPP(M) − E F T∗
(PPP(tK)
≤ distTV(L, M) + 2(var ξ(Y) − Eξ(Y))
9/25 Institut Mines-Telecom Functional Poisson convergence
Stein method
The main tool
Construct a Markov process (X(s), s ≥ 0)
with values in configuration space
ergodic with PPM(M) as invariant distribution
X(s)
distr.
−−−→ PPM(M)
for all initial condition X(0)
for which PPM(M) is a stationary distribution
X(0)
distr.
= PPM(M) =⇒ X(s)
distr.
= PPM(M), ∀s > 0
10/25 Institut Mines-Telecom Functional Poisson convergence
In one picture
PPP(M) PPP(M)
T#(PPP(tK))
P#
s (PPP(M))
P#
s (T#(PPP(tK)))
11/25 Institut Mines-Telecom Functional Poisson convergence
Realization of a Glauber process
Y
Time0
X(s)
sS1 S2
S1, S2, · · · : Poisson process of intensity M(Y) ds
Lifetimes : Exponential rv of param. 1
Remark : Nb of particles ∼ M/M/∞
12/25 Institut Mines-Telecom Functional Poisson convergence
Properties
Theorem
Distr. X(s)=PPP((1 − e−s)M) + e−s-thinning of the I.C.
X(s)
s→∞
−−−→ PPP(M)
If X(0)
distr.
= PPP(M) then X(s)
distr.
= PPP(M)
Generator
LF(ω) :=
Y
F(ω + δy ) − F(ω) M(dy)
+
y∈ω
F(ω − δy ) − F(ω)
13/25 Institut Mines-Telecom Functional Poisson convergence
Stein representation formula
Definition
PtF(η) = E[F(X(t)) | X(0) = η]
14/25 Institut Mines-Telecom Functional Poisson convergence
Stein representation formula
Definition
PtF(η) = E[F(X(t)) | X(0) = η]
Fundamental Lemma
F(ω)πM(dω) − F(ξ) =
∞
0
LPsF(ξ)ds
14/25 Institut Mines-Telecom Functional Poisson convergence
Stein representation formula
Definition
PtF(η) = E[F(X(t)) | X(0) = η]
Fundamental Lemma
F(ω)πM(dω) − F(ξ(η)) =
∞
0
LPsF(ξ(η))ds
14/25 Institut Mines-Telecom Functional Poisson convergence
Stein representation formula
Definition
PtF(η) = E[F(X(t)) | X(0) = η]
Fundamental Lemma
F(ω)πM(dω) − EF(ξ(η)) = E
∞
0
LPsF(ξ(η))ds
14/25 Institut Mines-Telecom Functional Poisson convergence
What we have to compute
Distance representation
dR(PPP(M), T#
(PPP(tK)))
= sup
F∈TV–Lip1
E
∞
0 Y
[PsF(ξ(η) + δy ) − PsF(ξ(η))] M(dy) ds
+ E
∞
0 y∈ξ(η)
[PsF(ξ(η) − δy ) − PtsF(ξ(η))] ds


15/25 Institut Mines-Telecom Functional Poisson convergence
Transformation of the stochastic integral
Bis repetita
dR(PPP(M), ξ(η))
= sup
F∈TV–Lip1
E
∞
0 Y
[PtF(ξ(η) + δy ) − PtF(ξ(η))] M(dy) dt
+ E
∞
0 y∈ξ(η)
[PtF(ξ(η) − δy ) − PtF(ξ(η))] dt


16/25 Institut Mines-Telecom Functional Poisson convergence
Mecke formula
Mecke formula ⇐⇒ IPP
E
y∈ζ
f (y, ζ) =
Y
Ef (y, ζ + δy ) M dy)
is equivalent to
E
Y
Dy U(ζ)f (y, ζ) M(dy) = E U(ζ)
Y
f (y, ζ)(dζ(y) − M(dy))
17/25 Institut Mines-Telecom Functional Poisson convergence
Consequence of the Mecke formula
Proof.
E
y∈ξ(η)
PtF(ξ(η) − δy ) − PtF(ξ(η))
=
1
k! domf
E PtF(ξ(η + δx1 + . . . + δxk
) − δf (x1,...,xk ))
− PtF(ξ(η + δx1 + . . . + δxk
)) Kk
(d(x1, . . . , xk))
= −
1
k! domf
E PtF(ξ(η) + δf (x1,··· ,xk )) − PtF(ξ(η))
Kk
(d(x1, . . . , xk)) + Remainder
18/25 Institut Mines-Telecom Functional Poisson convergence
A bit of geometry
η + δx + δy ξ(η + δx + δy )
f (x,y)
19/25 Institut Mines-Telecom Functional Poisson convergence
Last step
dR(PPP(M), ξ(η))
= sup
F∈TV–Lip1
∞
0 Y
Eζ [PtF(ζ + δy ) − PtF(ζ)] (M − f ∗
Kk
)(dy) dt
+Remainder
20/25 Institut Mines-Telecom Functional Poisson convergence
A key property (on the target space)
Definition
Dx F(ζ) = F(ζ + δx ) − F(ζ)
21/25 Institut Mines-Telecom Functional Poisson convergence
A key property (on the target space)
Definition
Dx F(ζ) = F(ζ + δx ) − F(ζ)
Intertwining property
For the Glauber point process
Dx PtF(ζ) = e−t
PtDx F(ζ)
21/25 Institut Mines-Telecom Functional Poisson convergence
Consequence
∞
0 Y
Eζ [PtF(ζ + δy ) − PtF(ζ)] (M − f ∗
Kk
)(dy) dt
=
∞
0 Y
Eζ[Dy PtF(ζ)] (M − f ∗
Kk
)(dy) dt
=
∞
0
e−t
Y
Eζ[PtDy F(ζ)] (M − f ∗
Kk
)(dy) dt
≤
Y
|M − f ∗
Kk
|(dy)
22/25 Institut Mines-Telecom Functional Poisson convergence
Generic Theorem
Theorem
dR(PPP(M)|[0,a] , ξ(η)|[0,a])
≤ dTV(f ∗
Kk
, M) + 3 · 2k+1
(f ∗
Kk
)(Y) r(domf )
where
r(domf ) := sup
1≤ ≤k−1,
(x1,...,x )∈X
Kk−
({(y1, . . . , yk− ) ∈ Xk−
:
(x1, . . . , x , y1, . . . , yk− ) ∈ domf })
23/25 Institut Mines-Telecom Functional Poisson convergence
Example (cont’d)
Theorem
dR(PPP(M)|[0,a] , ξ(η)|[0,a]) ≤ Cat−1
24/25 Institut Mines-Telecom Functional Poisson convergence
Compound Poisson approximation
The process
L
(b)
t (µ) =
1
2
(x,y)∈µ2
t,=
x − y b
1 x−y ≤δt
Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate)
Assume
t2δb
t
t→∞
−−−→ λ
25/25 Institut Mines-Telecom Functional Poisson convergence
Compound Poisson approximation
The process
L
(b)
t (µ) =
1
2
(x,y)∈µ2
t,=
x − y b
1 x−y ≤δt
Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate)
Assume
t2δb
t
t→∞
−−−→ λ
N ∼ Poisson(κd λ/2)
25/25 Institut Mines-Telecom Functional Poisson convergence
Compound Poisson approximation
The process
L
(b)
t (µ) =
1
2
(x,y)∈µ2
t,=
x − y b
1 x−y ≤δt
Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate)
Assume
t2δb
t
t→∞
−−−→ λ
N ∼ Poisson(κd λ/2)
(Xi , i ≥ 1) iid, uniform in Bd (λ1/d )
25/25 Institut Mines-Telecom Functional Poisson convergence
Compound Poisson approximation
The process
L
(b)
t (µ) =
1
2
(x,y)∈µ2
t,=
x − y b
1 x−y ≤δt
Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate)
Assume
t2δb
t
t→∞
−−−→ λ
N ∼ Poisson(κd λ/2)
(Xi , i ≥ 1) iid, uniform in Bd (λ1/d )
Then
dTV(t2b/d
L
(b)
t ,
N
j=1
Xj
b
) ≤ c(|t2
δb
t − λ| + t− min(2/d,1)
)
25/25 Institut Mines-Telecom Functional Poisson convergence
Ad

More Related Content

What's hot (19)

QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
Smart Multitask Bregman Clustering
Smart Multitask Bregman ClusteringSmart Multitask Bregman Clustering
Smart Multitask Bregman Clustering
Venkat Sai Sharath Mudhigonda
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Guillaume Costeseque
 
Ece4510 notes10
Ece4510 notes10Ece4510 notes10
Ece4510 notes10
K. M. Shahrear Hyder
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
The Statistical and Applied Mathematical Sciences Institute
 
How many vertices does a random walk miss in a network with moderately increa...
How many vertices does a random walk miss in a network with moderately increa...How many vertices does a random walk miss in a network with moderately increa...
How many vertices does a random walk miss in a network with moderately increa...
Nobutaka Shimizu
 
Intro to ABC
Intro to ABCIntro to ABC
Intro to ABC
Matt Moores
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning
Sean Meyn
 
Problem Understanding through Landscape Theory
Problem Understanding through Landscape TheoryProblem Understanding through Landscape Theory
Problem Understanding through Landscape Theory
jfrchicanog
 
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsReinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Sean Meyn
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
The Statistical and Applied Mathematical Sciences Institute
 
Ece4510 notes09
Ece4510 notes09Ece4510 notes09
Ece4510 notes09
K. M. Shahrear Hyder
 
Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...
Frank Nielsen
 
QMC Opening Workshop, Support Points - a new way to compact distributions, wi...
QMC Opening Workshop, Support Points - a new way to compact distributions, wi...QMC Opening Workshop, Support Points - a new way to compact distributions, wi...
QMC Opening Workshop, Support Points - a new way to compact distributions, wi...
The Statistical and Applied Mathematical Sciences Institute
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
The Statistical and Applied Mathematical Sciences Institute
 
Coordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like samplerCoordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like sampler
Christian Robert
 
sada_pres
sada_pressada_pres
sada_pres
Stephane Senecal
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Guillaume Costeseque
 
How many vertices does a random walk miss in a network with moderately increa...
How many vertices does a random walk miss in a network with moderately increa...How many vertices does a random walk miss in a network with moderately increa...
How many vertices does a random walk miss in a network with moderately increa...
Nobutaka Shimizu
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning
Sean Meyn
 
Problem Understanding through Landscape Theory
Problem Understanding through Landscape TheoryProblem Understanding through Landscape Theory
Problem Understanding through Landscape Theory
jfrchicanog
 
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsReinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Sean Meyn
 
Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...
Frank Nielsen
 
Coordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like samplerCoordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like sampler
Christian Robert
 

Similar to Stein's method for functional Poisson approximation (20)

Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
Houw Liong The
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
Institute of Technology Telkom
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
JeremyHeng10
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
JeremyHeng10
 
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
The Statistical and Applied Mathematical Sciences Institute
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systems
babak danyal
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
Frank Nielsen
 
03/17/2015 SLC talk
03/17/2015 SLC talk 03/17/2015 SLC talk
03/17/2015 SLC talk
Zheng Mengdi
 
A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)
Vicente Mataix Ferrándiz
 
SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4
Alessandro Palmeri
 
SLC 2015 talk improved version
SLC 2015 talk improved versionSLC 2015 talk improved version
SLC 2015 talk improved version
Zheng Mengdi
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture models
Frank Nielsen
 
Hiroyuki Sato
Hiroyuki SatoHiroyuki Sato
Hiroyuki Sato
Suurist
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
VjekoslavKovac1
 
Appendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution modelAppendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution model
Cora Li
 
Tables
TablesTables
Tables
Reza Jokar Naraghi
 
Damiano Pasetto
Damiano PasettoDamiano Pasetto
Damiano Pasetto
CoupledHydrologicalModeling
 
Tele4653 l4
Tele4653 l4Tele4653 l4
Tele4653 l4
Vin Voro
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
VjekoslavKovac1
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula Sheet
Haris Hassan
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
Houw Liong The
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
JeremyHeng10
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
JeremyHeng10
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systems
babak danyal
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
Frank Nielsen
 
03/17/2015 SLC talk
03/17/2015 SLC talk 03/17/2015 SLC talk
03/17/2015 SLC talk
Zheng Mengdi
 
A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)
Vicente Mataix Ferrándiz
 
SLC 2015 talk improved version
SLC 2015 talk improved versionSLC 2015 talk improved version
SLC 2015 talk improved version
Zheng Mengdi
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture models
Frank Nielsen
 
Hiroyuki Sato
Hiroyuki SatoHiroyuki Sato
Hiroyuki Sato
Suurist
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
VjekoslavKovac1
 
Appendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution modelAppendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution model
Cora Li
 
Tele4653 l4
Tele4653 l4Tele4653 l4
Tele4653 l4
Vin Voro
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
VjekoslavKovac1
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula Sheet
Haris Hassan
 
Ad

Recently uploaded (20)

A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptxA CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
ANJALICHANDRASEKARAN
 
THE SENSORY ORGANS BY DR. SADAKAT BASHIR.pptx
THE SENSORY ORGANS BY DR. SADAKAT BASHIR.pptxTHE SENSORY ORGANS BY DR. SADAKAT BASHIR.pptx
THE SENSORY ORGANS BY DR. SADAKAT BASHIR.pptx
SadakatBashir
 
Mycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes FungiMycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes Fungi
SAYANTANMALLICK5
 
Biochemistry Lesson_Molecular Polarity.ppt
Biochemistry Lesson_Molecular Polarity.pptBiochemistry Lesson_Molecular Polarity.ppt
Biochemistry Lesson_Molecular Polarity.ppt
ErPri1
 
Antimalarial drug Medicinal Chemistry III
Antimalarial drug Medicinal Chemistry IIIAntimalarial drug Medicinal Chemistry III
Antimalarial drug Medicinal Chemistry III
HRUTUJA WAGH
 
Cordaitales - Yudhvir Singh Checked[1].pptx gymnosperms
Cordaitales - Yudhvir Singh Checked[1].pptx gymnospermsCordaitales - Yudhvir Singh Checked[1].pptx gymnosperms
Cordaitales - Yudhvir Singh Checked[1].pptx gymnosperms
ReetikaMakkar
 
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
Sérgio Sacani
 
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Helena Celeste Mata Rico
 
physics of renewable energy sources .pptx
physics of renewable energy sources  .pptxphysics of renewable energy sources  .pptx
physics of renewable energy sources .pptx
zaramunir6
 
Macrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.pptMacrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.ppt
HRUTUJA WAGH
 
Preparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptxPreparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptx
klynct
 
Anthelmintics Medicinal Chemistry III PPT
Anthelmintics Medicinal Chemistry III PPTAnthelmintics Medicinal Chemistry III PPT
Anthelmintics Medicinal Chemistry III PPT
HRUTUJA WAGH
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
university of arizona ~ favor's college candidate project.pptx
university of arizona ~ favor's college candidate project.pptxuniversity of arizona ~ favor's college candidate project.pptx
university of arizona ~ favor's college candidate project.pptx
favoranamelechi107
 
Somato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptxSomato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptx
klynct
 
Chapter-10-Light-reflection-and-refraction.ppt
Chapter-10-Light-reflection-and-refraction.pptChapter-10-Light-reflection-and-refraction.ppt
Chapter-10-Light-reflection-and-refraction.ppt
uniyaladiti914
 
Phytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and ManagementpptxPhytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and Managementpptx
Dr Showkat Ahmad Wani
 
Forestry_Exit_Exam_Wollega University_Gimbi Campus.pdf
Forestry_Exit_Exam_Wollega University_Gimbi Campus.pdfForestry_Exit_Exam_Wollega University_Gimbi Campus.pdf
Forestry_Exit_Exam_Wollega University_Gimbi Campus.pdf
ChalaKelbessa
 
Integration of AI and ML in Biotechnology
Integration of AI and ML in BiotechnologyIntegration of AI and ML in Biotechnology
Integration of AI and ML in Biotechnology
Sourabh Junawa
 
ANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC IIIANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC III
HRUTUJA WAGH
 
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptxA CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
ANJALICHANDRASEKARAN
 
THE SENSORY ORGANS BY DR. SADAKAT BASHIR.pptx
THE SENSORY ORGANS BY DR. SADAKAT BASHIR.pptxTHE SENSORY ORGANS BY DR. SADAKAT BASHIR.pptx
THE SENSORY ORGANS BY DR. SADAKAT BASHIR.pptx
SadakatBashir
 
Mycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes FungiMycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes Fungi
SAYANTANMALLICK5
 
Biochemistry Lesson_Molecular Polarity.ppt
Biochemistry Lesson_Molecular Polarity.pptBiochemistry Lesson_Molecular Polarity.ppt
Biochemistry Lesson_Molecular Polarity.ppt
ErPri1
 
Antimalarial drug Medicinal Chemistry III
Antimalarial drug Medicinal Chemistry IIIAntimalarial drug Medicinal Chemistry III
Antimalarial drug Medicinal Chemistry III
HRUTUJA WAGH
 
Cordaitales - Yudhvir Singh Checked[1].pptx gymnosperms
Cordaitales - Yudhvir Singh Checked[1].pptx gymnospermsCordaitales - Yudhvir Singh Checked[1].pptx gymnosperms
Cordaitales - Yudhvir Singh Checked[1].pptx gymnosperms
ReetikaMakkar
 
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
Sérgio Sacani
 
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Helena Celeste Mata Rico
 
physics of renewable energy sources .pptx
physics of renewable energy sources  .pptxphysics of renewable energy sources  .pptx
physics of renewable energy sources .pptx
zaramunir6
 
Macrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.pptMacrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.ppt
HRUTUJA WAGH
 
Preparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptxPreparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptx
klynct
 
Anthelmintics Medicinal Chemistry III PPT
Anthelmintics Medicinal Chemistry III PPTAnthelmintics Medicinal Chemistry III PPT
Anthelmintics Medicinal Chemistry III PPT
HRUTUJA WAGH
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
university of arizona ~ favor's college candidate project.pptx
university of arizona ~ favor's college candidate project.pptxuniversity of arizona ~ favor's college candidate project.pptx
university of arizona ~ favor's college candidate project.pptx
favoranamelechi107
 
Somato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptxSomato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptx
klynct
 
Chapter-10-Light-reflection-and-refraction.ppt
Chapter-10-Light-reflection-and-refraction.pptChapter-10-Light-reflection-and-refraction.ppt
Chapter-10-Light-reflection-and-refraction.ppt
uniyaladiti914
 
Phytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and ManagementpptxPhytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and Managementpptx
Dr Showkat Ahmad Wani
 
Forestry_Exit_Exam_Wollega University_Gimbi Campus.pdf
Forestry_Exit_Exam_Wollega University_Gimbi Campus.pdfForestry_Exit_Exam_Wollega University_Gimbi Campus.pdf
Forestry_Exit_Exam_Wollega University_Gimbi Campus.pdf
ChalaKelbessa
 
Integration of AI and ML in Biotechnology
Integration of AI and ML in BiotechnologyIntegration of AI and ML in Biotechnology
Integration of AI and ML in Biotechnology
Sourabh Junawa
 
ANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC IIIANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC III
HRUTUJA WAGH
 
Ad

Stein's method for functional Poisson approximation

  • 1. Institut Mines-Telecom Functional Poisson convergence L. Decreusefond (joint work with M. Schulte, C. Th¨ale) Stein, Malliavin, Poisson and co.
  • 2. Motivation : Poisson polytopes 1 2 3 4 5 6 0 1 23456 η ξ(η) 2/25 Institut Mines-Telecom Functional Poisson convergence
  • 3. Motivation : Poisson polytopes 1 2 3 4 5 6 0 1 23456 η ξ(η) Question What happens when the number of points goes to infinity ? 2/25 Institut Mines-Telecom Functional Poisson convergence
  • 4. Poisson point process Hypothesis Points are distributed to a Poisson process of control measure tK Definition The number of points is a Poisson rv (t K(Sd−1)) Given the number of points, they are independently drawn with distribution K 3/25 Institut Mines-Telecom Functional Poisson convergence
  • 5. Rescaling : γ = 2/(d − 1) Campbell-Mecke formula E x1,··· ,xk ∈ω (k) = f (x) = tk f (x1, · · · , xk)K(dx1, · · · , dxk) 4/25 Institut Mines-Telecom Functional Poisson convergence
  • 6. Rescaling : γ = 2/(d − 1) Campbell-Mecke formula E x1,··· ,xk ∈ω (k) = f (x) = tk f (x1, · · · , xk)K(dx1, · · · , dxk) Mean number of points (after rescaling) 1 2 E x=y∈ω 1 tγx−tγy ≤β = t2 2 Sd−1⊗Sd−1 1 x−y ≤t−γβdxdy 4/25 Institut Mines-Telecom Functional Poisson convergence
  • 7. Rescaling : γ = 2/(d − 1) Campbell-Mecke formula E x1,··· ,xk ∈ω (k) = f (x) = tk f (x1, · · · , xk)K(dx1, · · · , dxk) Mean number of points (after rescaling) 1 2 E x=y∈ω 1 tγx−tγy ≤β = t2 2 Sd−1⊗Sd−1 1 x−y ≤t−γβdxdy Geometry Vd−1(Sd−1 ∩Bd βt−γ (y)) = κd−1(βt−γ )d−1 + (d − 1)κd−1 2 (βt−γ )d +O(t−γ( 4/25 Institut Mines-Telecom Functional Poisson convergence
  • 8. Rescaling : γ = 2/(d − 1) Campbell-Mecke formula E x1,··· ,xk ∈ω (k) = f (x) = tk f (x1, · · · , xk)K(dx1, · · · , dxk) Mean number of points (after rescaling) 1 2 E x=y∈ω 1 tγx−tγy ≤β = t2 2 Sd−1⊗Sd−1 1 x−y ≤t−γβdxdy Geometry Vd−1(Sd−1 ∩Bd βt−γ (y)) = κd−1(βt−γ )d−1 + (d − 1)κd−1 2 (βt−γ )d +O(t−γ( 4/25 Institut Mines-Telecom Functional Poisson convergence
  • 9. Schulte-Th¨ale (2012) based on Peccati (2011) P(t2/(d−1) Tm(ξ) > x) − e−βx(d−1) m−1 i=0 (βxd−1)i i! ≤ Cx t− min(1/2,2/(d−1)) 5/25 Institut Mines-Telecom Functional Poisson convergence
  • 10. Schulte-Th¨ale (2012) based on Peccati (2011) P(t2/(d−1) Tm(ξ) > x) − e−βx(d−1) m−1 i=0 (βxd−1)i i! ≤ Cx t− min(1/2,2/(d−1)) What about speed of convergence as a process ? 5/25 Institut Mines-Telecom Functional Poisson convergence
  • 11. Configuration space Definition A configuration is a locally finite set of particles on a Polish spaceY f dω = x∈ω f (x) 6/25 Institut Mines-Telecom Functional Poisson convergence
  • 12. Configuration space Definition A configuration is a locally finite set of particles on a Polish spaceY f dω = x∈ω f (x) Vague topology ωn vaguely −−−−→ ω ⇐⇒ f dωn n→∞ −−−→ f dω for all f continuous with compact support from Y to R 6/25 Institut Mines-Telecom Functional Poisson convergence
  • 13. Configuration space Definition A configuration is a locally finite set of particles on a Polish spaceY f dω = x∈ω f (x) Vague topology ωn vaguely −−−−→ ω ⇐⇒ f dωn n→∞ −−−→ f dω for all f continuous with compact support from Y to R Be careful ! δn vaguely −−−−→ ∅ 6/25 Institut Mines-Telecom Functional Poisson convergence
  • 14. Convergence in configuration space Theorem (DST) dR(Pn, Q) n→∞ −−−→ 0 =⇒ Pn distr. −−−→ Q Convergence in NY 7/25 Institut Mines-Telecom Functional Poisson convergence
  • 15. Example Our settings Pt : PPP of intensity tK on C ⊂ X f : dom f = Ck/Sk −→ Y Definition T( x∈η δx ) = (x1,··· ,xk )∈ηk = δt2/d f (x1,··· ,xk ) := ξ(η) f ∗K : image measure of (tK)k by f M: intensity of the target Poisson PP Example 8/25 Institut Mines-Telecom Functional Poisson convergence
  • 16. Main result Theorem (Two moments are sufficient) sup F∈TV–Lip1 E F PPP(M) − E F T∗ (PPP(tK) ≤ distTV(L, M) + 2(var ξ(Y) − Eξ(Y)) 9/25 Institut Mines-Telecom Functional Poisson convergence
  • 17. Stein method The main tool Construct a Markov process (X(s), s ≥ 0) with values in configuration space ergodic with PPM(M) as invariant distribution X(s) distr. −−−→ PPM(M) for all initial condition X(0) for which PPM(M) is a stationary distribution X(0) distr. = PPM(M) =⇒ X(s) distr. = PPM(M), ∀s > 0 10/25 Institut Mines-Telecom Functional Poisson convergence
  • 18. In one picture PPP(M) PPP(M) T#(PPP(tK)) P# s (PPP(M)) P# s (T#(PPP(tK))) 11/25 Institut Mines-Telecom Functional Poisson convergence
  • 19. Realization of a Glauber process Y Time0 X(s) sS1 S2 S1, S2, · · · : Poisson process of intensity M(Y) ds Lifetimes : Exponential rv of param. 1 Remark : Nb of particles ∼ M/M/∞ 12/25 Institut Mines-Telecom Functional Poisson convergence
  • 20. Properties Theorem Distr. X(s)=PPP((1 − e−s)M) + e−s-thinning of the I.C. X(s) s→∞ −−−→ PPP(M) If X(0) distr. = PPP(M) then X(s) distr. = PPP(M) Generator LF(ω) := Y F(ω + δy ) − F(ω) M(dy) + y∈ω F(ω − δy ) − F(ω) 13/25 Institut Mines-Telecom Functional Poisson convergence
  • 21. Stein representation formula Definition PtF(η) = E[F(X(t)) | X(0) = η] 14/25 Institut Mines-Telecom Functional Poisson convergence
  • 22. Stein representation formula Definition PtF(η) = E[F(X(t)) | X(0) = η] Fundamental Lemma F(ω)πM(dω) − F(ξ) = ∞ 0 LPsF(ξ)ds 14/25 Institut Mines-Telecom Functional Poisson convergence
  • 23. Stein representation formula Definition PtF(η) = E[F(X(t)) | X(0) = η] Fundamental Lemma F(ω)πM(dω) − F(ξ(η)) = ∞ 0 LPsF(ξ(η))ds 14/25 Institut Mines-Telecom Functional Poisson convergence
  • 24. Stein representation formula Definition PtF(η) = E[F(X(t)) | X(0) = η] Fundamental Lemma F(ω)πM(dω) − EF(ξ(η)) = E ∞ 0 LPsF(ξ(η))ds 14/25 Institut Mines-Telecom Functional Poisson convergence
  • 25. What we have to compute Distance representation dR(PPP(M), T# (PPP(tK))) = sup F∈TV–Lip1 E ∞ 0 Y [PsF(ξ(η) + δy ) − PsF(ξ(η))] M(dy) ds + E ∞ 0 y∈ξ(η) [PsF(ξ(η) − δy ) − PtsF(ξ(η))] ds   15/25 Institut Mines-Telecom Functional Poisson convergence
  • 26. Transformation of the stochastic integral Bis repetita dR(PPP(M), ξ(η)) = sup F∈TV–Lip1 E ∞ 0 Y [PtF(ξ(η) + δy ) − PtF(ξ(η))] M(dy) dt + E ∞ 0 y∈ξ(η) [PtF(ξ(η) − δy ) − PtF(ξ(η))] dt   16/25 Institut Mines-Telecom Functional Poisson convergence
  • 27. Mecke formula Mecke formula ⇐⇒ IPP E y∈ζ f (y, ζ) = Y Ef (y, ζ + δy ) M dy) is equivalent to E Y Dy U(ζ)f (y, ζ) M(dy) = E U(ζ) Y f (y, ζ)(dζ(y) − M(dy)) 17/25 Institut Mines-Telecom Functional Poisson convergence
  • 28. Consequence of the Mecke formula Proof. E y∈ξ(η) PtF(ξ(η) − δy ) − PtF(ξ(η)) = 1 k! domf E PtF(ξ(η + δx1 + . . . + δxk ) − δf (x1,...,xk )) − PtF(ξ(η + δx1 + . . . + δxk )) Kk (d(x1, . . . , xk)) = − 1 k! domf E PtF(ξ(η) + δf (x1,··· ,xk )) − PtF(ξ(η)) Kk (d(x1, . . . , xk)) + Remainder 18/25 Institut Mines-Telecom Functional Poisson convergence
  • 29. A bit of geometry η + δx + δy ξ(η + δx + δy ) f (x,y) 19/25 Institut Mines-Telecom Functional Poisson convergence
  • 30. Last step dR(PPP(M), ξ(η)) = sup F∈TV–Lip1 ∞ 0 Y Eζ [PtF(ζ + δy ) − PtF(ζ)] (M − f ∗ Kk )(dy) dt +Remainder 20/25 Institut Mines-Telecom Functional Poisson convergence
  • 31. A key property (on the target space) Definition Dx F(ζ) = F(ζ + δx ) − F(ζ) 21/25 Institut Mines-Telecom Functional Poisson convergence
  • 32. A key property (on the target space) Definition Dx F(ζ) = F(ζ + δx ) − F(ζ) Intertwining property For the Glauber point process Dx PtF(ζ) = e−t PtDx F(ζ) 21/25 Institut Mines-Telecom Functional Poisson convergence
  • 33. Consequence ∞ 0 Y Eζ [PtF(ζ + δy ) − PtF(ζ)] (M − f ∗ Kk )(dy) dt = ∞ 0 Y Eζ[Dy PtF(ζ)] (M − f ∗ Kk )(dy) dt = ∞ 0 e−t Y Eζ[PtDy F(ζ)] (M − f ∗ Kk )(dy) dt ≤ Y |M − f ∗ Kk |(dy) 22/25 Institut Mines-Telecom Functional Poisson convergence
  • 34. Generic Theorem Theorem dR(PPP(M)|[0,a] , ξ(η)|[0,a]) ≤ dTV(f ∗ Kk , M) + 3 · 2k+1 (f ∗ Kk )(Y) r(domf ) where r(domf ) := sup 1≤ ≤k−1, (x1,...,x )∈X Kk− ({(y1, . . . , yk− ) ∈ Xk− : (x1, . . . , x , y1, . . . , yk− ) ∈ domf }) 23/25 Institut Mines-Telecom Functional Poisson convergence
  • 35. Example (cont’d) Theorem dR(PPP(M)|[0,a] , ξ(η)|[0,a]) ≤ Cat−1 24/25 Institut Mines-Telecom Functional Poisson convergence
  • 36. Compound Poisson approximation The process L (b) t (µ) = 1 2 (x,y)∈µ2 t,= x − y b 1 x−y ≤δt Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate) Assume t2δb t t→∞ −−−→ λ 25/25 Institut Mines-Telecom Functional Poisson convergence
  • 37. Compound Poisson approximation The process L (b) t (µ) = 1 2 (x,y)∈µ2 t,= x − y b 1 x−y ≤δt Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate) Assume t2δb t t→∞ −−−→ λ N ∼ Poisson(κd λ/2) 25/25 Institut Mines-Telecom Functional Poisson convergence
  • 38. Compound Poisson approximation The process L (b) t (µ) = 1 2 (x,y)∈µ2 t,= x − y b 1 x−y ≤δt Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate) Assume t2δb t t→∞ −−−→ λ N ∼ Poisson(κd λ/2) (Xi , i ≥ 1) iid, uniform in Bd (λ1/d ) 25/25 Institut Mines-Telecom Functional Poisson convergence
  • 39. Compound Poisson approximation The process L (b) t (µ) = 1 2 (x,y)∈µ2 t,= x − y b 1 x−y ≤δt Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate) Assume t2δb t t→∞ −−−→ λ N ∼ Poisson(κd λ/2) (Xi , i ≥ 1) iid, uniform in Bd (λ1/d ) Then dTV(t2b/d L (b) t , N j=1 Xj b ) ≤ c(|t2 δb t − λ| + t− min(2/d,1) ) 25/25 Institut Mines-Telecom Functional Poisson convergence
  翻译: