SlideShare a Scribd company logo
Appendix of Heterogeneous Cellular Network
User Distribution Model
Chao Li, Abbas Yongacoglu, and Claude D’Amours
School of Electrical Engineering and Computer Science
University of Ottawa
Ottawa, ON, K1N 6N5, CA
Email: {cli026, yongac, cdamours}@uottawa.ca
APPENDIX
A. Proof of Lemma 1
The probability that a user associates with the BS in kth
tier (conditioned that the distance between this user to its
associated BS is d) is
P|d(Ak)
(a)
= P|d[PBRPk
> any PBRPi
i=1:K,i=k
]
(b)
=
K
i=1,i=k
P|d[PBRPk
> PBRPi
]
=
K
i=1,i=k
P|d[PkCkd−αk
> PiCid−αi
i ]
=
K
i=1,i=k
P|d[di > (
PiCi
PkCk
)
1
αi · d
αk
αi ]
(c)
=
K
i=1,i=k
exp(
−λiπ(
PiCi
PkCk
)
2
αi ·d
2αk
αi
)
where (a) is for the user connectivity model that is the
maximum average bias received power connectivity model. If
the user associates with its BS in kth tier, PBRPk
=PkCkd−αk
is the maximum average bias received power compared with
PBRPi =PiCid−αi
i in other tiers. (b) is because each tier is
independent and it is the joint probability of all the other tiers
except kth tier. (c) assumes that the R is the distance between
this user to its closest interference in ith tier. For the ith tier
BS, their spatial distribution is Poisson point process. So the
probability P[di > R] above is the null probability, which is
e(−λiπR2
)
in the circle area πR2
.
The above proof is almost similar with [1]. Here only the
conditional associated probability is needed.
B. Proof of Lemma 2
The probability density function (PDF) of the distance d
between the user and its associated kth tier BS includes two
parts. One is the PDF fref (d) because BSs are with PPP
distribution of the density λk. The other is the user density
fdenk
(d) in kth tier we defined. fdenk
(d) can be any non-
uniform user density function such as fdenLin
(d), fdenExp
(d)
and fdenGau
(d) adjusted by the experimentally obtained gain
GT un. If there are no users on kth tiers, the corresponding
fdenk
(d)=0.
fref (d)
(a)
= exp(−λkπd2
) · 2λkπd
fk(d) = fref (d) · fdenk
(d)
= exp(−λkπd2
) · 2λkπd · fdenk
(d)
where (a) is the PDF of the distance d to the associated BS
with PPP of the density λk from [2].
C. Proof of Lemma 3
The proof is almost the same to [1]. Here give the detailed
proof again for reference.
P|d[SINRk(d) > Tk|Ak]
= P|d[
PkGkd
−αk
Ir + σ2
L0
> Tk]
= P|d[Gk > (Ir +
σ2
L0
)TkPk
−1
dαk
]
= EIr
(P|d[Gk > (Ir +
σ2
L0
)TkPk
−1
dαk
])
(a)
= EIr
[exp(−(Ir +
σ2
L0
)TkPk
−1
dαk
)]
= exp(−
σ2
L0
TkPk
−1
dαk
)EIr
[exp(−IrTkPk
−1
dαk
)]
(b)
= exp(−
σ2
L0
TkPk
−1
dαk
)
K
i=1
EIri
[exp(−IriTkPk
−1
dαk
)]
(c)
= exp(−
σ2
L0
TkPk
−1
dαk
)
K
i=1
LIri (TkPk
−1
dαk
)
where (a) is from the assumption of the channel fading
envelope is Rayleigh fading. So Gk is random fading channel
power which is exponential distributed with the unity mean.
(b) comes from Ir =
K
i=1 Iri. (c) gives the definition of
Laplace transform Lx(s) = Ex[e−xs
]. Ex[∗] is the expectation
of ∗ over x.
D. Proof of Lemma 4
The Laplace transform of the interference in ith tier is
LIri (s)
(a)
= exp(πλiDi
2
) · exp(−πλiDi
2
Ek(e−skDi
−αi
))·
exp(−πλis
2
αi Ek(k
2
αi Γ(1 −
2
αi
)))·
exp(πλis
2
αi Ek(k
2
αi Γ(1 −
2
αi
, skDi
−αi
)))
(b)
= exp(πλiDi
2
) · exp(−πλiDi
2
EG(e−sPiGiDi
−αi
))·
exp(−πλis
2
αi EG((PiGi)
2
αi Γ(1 −
2
αi
)))·
exp(πλis
2
αi EG((PiGi)
2
αi Γ(1 −
2
αi
, sPiGiDi
−αi
)))
(c)
= exp(πλiDi
2
) · exp(−πλiDi
2
LG(sPiD−αi
i )) · Mi(s)
(d)
= exp(πλiDi
2
) · exp(
−πλiDi
2
1 + sPiD−αi
i
) · Mi(s)
The detail explanation of the above equation in each step is
as follows.
(a) gives the Laplace transform of the interference based
on the decay power law impulse response function f(k, r) =
kr−α
, r ≥ 1 [3]. Γ(t) =
∞
0
xt−1
e−x
dx is gamma function.
(b) updates response function f(k, r) = kr−α
into
f(G, r) = PiGir−α
.
(c) shows that the key part of the derivation of LIri
is the
calculation of Mi(s).
(d) comes from LG, which is the Laplace transform of
exponential channel power gain (LG(s) = 1
1+s [4]).
Mi(s)
= exp(−πλis
2
αi EG((PiGi)
2
αi Γ(1 −
2
αi
)))·
exp(πλis
2
αi EG((PiGi)
2
αi Γ(1 −
2
αi
, sPiGiDi
−αi
)))
(a)
= exp(−πλis
2
αi EG((PiGi)
2
αi ·
Γ(1 −
2
αi
)(sPiGiDi
−αi
)
1− 2
αi e−sPiGiDi
−αi
·
∞
n=0
(sPiGiDi
−αi
)n
Γ(2 + n − 2
αi
)
))
= exp(−πλiΓ(1 −
2
αi
)Di
2
·
∞
n=0
(sPiDi
−αi
)n+1 EG(Gn+1
i · e−sPiGiDi
−αi
)
Γ(2 + n − 2
αi
)
)
(b)
= exp(−πλiΓ(1 −
2
αi
)Di
2
·
∞
n=0
(sPiDi
−αi
)n+1 Γ(n + 2)
Γ(2 + n − 2
αi
)
·
(sPiDi
−αi
+ 1)−n−2
)
= exp(−πλiΓ(1 −
2
αi
)Di
2
·
sPiDi
−αi
(sPiDi
−αi
+ 1)2
·
∞
n=0
Γ(n + 2)
Γ(2 + n − 2
αi
)
· (
sPiDi
−αj
sPiDi
−αi
+ 1
)n
)
(c)
= exp(−πλiΓ(1 −
2
αi
)Di
2 sPiDi
−αi
(sPiDi
−αi
+ 1)2
·
Γ(2)
Γ(2 − 2
αi
)
· 2F1(2, 1, 2 −
2
αj
;
sPiDi
−αi
sPiDi
−αi
+ 1
))
= exp(−πλiDi
2
(1 −
2
αi
)−1 sPiDi
−αi
(sPiDi
−αj
+ 1)2
·
2F1(2, 1, 2 −
2
αi
;
sPiDi
−αi
sPiDi
−αi
+ 1
))
The detail explanation of the above equation in each step is
as follows.
(a) comes from [5] and [6] about the gamma function
property Γ(a, x) = Γ(a) − Γ(a)xa
e−x ∞
n=0
xn
Γ(a+n+1) .
(b) gives the expectation item of exponential power gain
EG(Gn+1
i · e−sPiGiDi
−αi
) =
∞
0
Gn+1
e−sPiDi
−αi
fG(G)dG,
fG(G) is the PDF of channel power gain G. fG(G) =
e−G
when G is exponential distributed. So EG =
∞
0
Gn+1
e−sPiDi
−αi
e−G
dG. After simplification, EG(Gn+1
i ·
e−sPiGiDi
−αi
) = (sPiDi
−αi
+ 1)−n−2
Γ(n + 2).
(c) is from [5]. Γ(a)
Γ(c) ·2F1(a, 1, c : z) =
∞
n=0
Γ(a+n)
Γ(c+n) · zn
.
2F1(.) is the Gauss hypergeometric function.
Hence, Laplace transform of total interference in the ith tier
is
LIri
(s) = exp(πλiDi
2
) · exp(
−πλiDi
2
1 + Ri
)·
exp(−πλiDi
2
(1 −
2
αi
)−1 Ri
(Ri + 1)2
·
2F1(2, 1, 2 −
2
αj
;
Ri
Ri + 1
))
where Ri is sPiDi
−αi
. λi is ith tier BS density. Di is
( PiCi
PkCk
)
1
αi d
αk
αi and it is the minimum distance from the closest
interfering BS in ith tier. For the detailed proof about this min-
imum distance refer to [1]. 2F1(.) is the Gauss hypergeometric
function. Ci is biased factor in ith tier. A bias factor greater
than unity enables the cells to have an incrementally larger
coverage area and higher load.
E. Proof of Theorem
The coverage probability for non-uniform user model is as
follows.
Pc = Ed[
K
k=1
P|d[SINRk(d) > Tk|Ak] · P|d(Ak)]
=
K
k=1
∞
d=0
P|d[SINRik(d) > Tk|Ak] · P|d(Ak)·
fk(d) dd
=
K
k=1
Pck
where fk(d) is the PDF of the distance d.
The coverage probability associating with the kth tier BS is
Pck =
∞
d=0
P|d[SINRk(d) > Tk|Ak] · P|d(Ak) · fk(d) dd
=
∞
d=0
exp(−
σ2
L0
TkPk
−1
dαk
)
K
i=1
LIri
(TkPk
−1
dαk
)·
P|d(Ak) · fk(d)dd
=
∞
d=0
exp(−
σ2
L0
TkPk
−1
dαk
)
K
i=1
LIri (TkPk
−1
dαk
)·
K
i=1,i=k
exp(−λiπ(
PiCi
PkCk
)
2
αi · d
2αk
αi ) · exp(−λkπd2
)·
2λkπd · fdenk
(d) dd
=
∞
d=0
exp(−
σ2
L0
TkPk
−1
dαk
)
K
i=1
LIri
(TkPk
−1
dαk
)·
K
i=1
exp(−λiπ(
PiCi
PkCk
)
2
αi · d
2αk
αi ) · 2λkπd · fdenk
(d) dd
REFERENCES
[1] H.-S. Jo, Y. J. Sang, P. Xia, and J. G. Andrews, “Heterogeneous cellular
networks with flexible cell association: A comprehensive downlink sinr
analysis,” Wireless Communications, IEEE Transactions on, vol. 11,
no. 10, pp. 3484–3495, 2012.
[2] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to cov-
erage and rate in cellular networks,” Communications, IEEE Transactions
on, vol. 59, no. 11, pp. 3122–3134, 2011.
[3] J. Venkataraman, M. Haenggi, and O. Collins, “Shot noise models for
outage and throughput analyses in wireless ad hoc networks,” in Military
Communications Conference, 2006. MILCOM 2006. IEEE. IEEE, 2006,
pp. 1–7.
[4] F. Yilmaz and M.-S. Alouini, “A novel unified expression for the
capacity and bit error probability of wireless communication systems over
generalized fading channels,” IEEE Transactions on Communications,
vol. 60, no. 7, pp. 1862–1876, 2012.
[5] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions:
with formulas, graphs, and mathematical tables. Courier Corporation,
1964, vol. 55.
[6] M. Di Renzo, A. Guidotti, and G. E. Corazza, “Average rate of downlink
heterogeneous cellular networks over generalized fading channels: A
stochastic geometry approach,” Communications, IEEE Transactions on,
vol. 61, no. 7, pp. 3050–3071, 2013.

More Related Content

What's hot (20)

bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
Matt Moores
 
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
David Gleich
 
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
Matt Moores
 
Specific Finite Groups(General)
Specific Finite Groups(General)Specific Finite Groups(General)
Specific Finite Groups(General)
Shane Nicklas
 
Symbolic Regression on Network Properties
Symbolic Regression on Network PropertiesSymbolic Regression on Network Properties
Symbolic Regression on Network Properties
Marcus Märtens
 
Further mathematics notes zimsec cambridge zimbabwe
Further mathematics notes zimsec cambridge zimbabweFurther mathematics notes zimsec cambridge zimbabwe
Further mathematics notes zimsec cambridge zimbabwe
Alpro
 
SIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithmsSIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithms
Jagadeeswaran Rathinavel
 
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFULLADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
Fransiskeran
 
Logarithm Bases IA
Logarithm Bases IALogarithm Bases IA
Logarithm Bases IA
bank8787
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimation
Alexander Litvinenko
 
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
Low-rank matrix approximations in Python by Christian Thurau PyData 2014Low-rank matrix approximations in Python by Christian Thurau PyData 2014
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
PyData
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Matt Moores
 
IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET Journal
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
Alexander Decker
 
Multi nomial pdf
Multi nomial pdfMulti nomial pdf
Multi nomial pdf
sabbir11
 
Radix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier TransformRadix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier Transform
IJERA Editor
 
Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...
journal ijrtem
 
Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)
Lina Manriquez
 
Talk5
Talk5Talk5
Talk5
Diptarka Das
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
Alexander Litvinenko
 
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
Matt Moores
 
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
David Gleich
 
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
Matt Moores
 
Specific Finite Groups(General)
Specific Finite Groups(General)Specific Finite Groups(General)
Specific Finite Groups(General)
Shane Nicklas
 
Symbolic Regression on Network Properties
Symbolic Regression on Network PropertiesSymbolic Regression on Network Properties
Symbolic Regression on Network Properties
Marcus Märtens
 
Further mathematics notes zimsec cambridge zimbabwe
Further mathematics notes zimsec cambridge zimbabweFurther mathematics notes zimsec cambridge zimbabwe
Further mathematics notes zimsec cambridge zimbabwe
Alpro
 
SIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithmsSIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithms
Jagadeeswaran Rathinavel
 
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFULLADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
Fransiskeran
 
Logarithm Bases IA
Logarithm Bases IALogarithm Bases IA
Logarithm Bases IA
bank8787
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimation
Alexander Litvinenko
 
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
Low-rank matrix approximations in Python by Christian Thurau PyData 2014Low-rank matrix approximations in Python by Christian Thurau PyData 2014
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
PyData
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Matt Moores
 
IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET Journal
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
Alexander Decker
 
Multi nomial pdf
Multi nomial pdfMulti nomial pdf
Multi nomial pdf
sabbir11
 
Radix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier TransformRadix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier Transform
IJERA Editor
 
Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...
journal ijrtem
 
Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)
Lina Manriquez
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
Alexander Litvinenko
 

Viewers also liked (13)

Clase Invertida
Clase InvertidaClase Invertida
Clase Invertida
MyriamSPS
 
Cecelia Cohn Resume
Cecelia Cohn ResumeCecelia Cohn Resume
Cecelia Cohn Resume
Cecelia Cohn
 
IIM-Ahmedbad Presenation for Finance Sucess story By Pratik Patel (Profitgyan)
IIM-Ahmedbad Presenation for Finance Sucess story By Pratik Patel (Profitgyan)IIM-Ahmedbad Presenation for Finance Sucess story By Pratik Patel (Profitgyan)
IIM-Ahmedbad Presenation for Finance Sucess story By Pratik Patel (Profitgyan)
Pratik Patel
 
REAL ESTATE: Premier VIP Seller
REAL ESTATE: Premier VIP SellerREAL ESTATE: Premier VIP Seller
REAL ESTATE: Premier VIP Seller
diorexecutive
 
intelligent ambulance system idea
intelligent ambulance system idea intelligent ambulance system idea
intelligent ambulance system idea
Nishanth Smartboy
 
Makalah isk
Makalah iskMakalah isk
Makalah isk
Putra Samuda
 
Novattro пэт материал для любого уровня подготовки
Novattro пэт   материал для любого уровня подготовки Novattro пэт   материал для любого уровня подготовки
Novattro пэт материал для любого уровня подготовки
SafPlast
 
Laporan kunjungan kewirausahaan
Laporan kunjungan kewirausahaanLaporan kunjungan kewirausahaan
Laporan kunjungan kewirausahaan
Faqih Motionet
 
Chap 8 thiols and sulfides (1)
Chap 8 thiols and sulfides (1)Chap 8 thiols and sulfides (1)
Chap 8 thiols and sulfides (1)
Melvy Dela Torre
 
Nike Marketing Analysis
Nike Marketing AnalysisNike Marketing Analysis
Nike Marketing Analysis
Phil Barnes
 
Adidas Integrated marketing Communication campaign
Adidas Integrated marketing Communication campaignAdidas Integrated marketing Communication campaign
Adidas Integrated marketing Communication campaign
Sameer10031993
 
Apple Case Study
Apple Case StudyApple Case Study
Apple Case Study
Anuj Prajapati
 
Clase Invertida
Clase InvertidaClase Invertida
Clase Invertida
MyriamSPS
 
Cecelia Cohn Resume
Cecelia Cohn ResumeCecelia Cohn Resume
Cecelia Cohn Resume
Cecelia Cohn
 
IIM-Ahmedbad Presenation for Finance Sucess story By Pratik Patel (Profitgyan)
IIM-Ahmedbad Presenation for Finance Sucess story By Pratik Patel (Profitgyan)IIM-Ahmedbad Presenation for Finance Sucess story By Pratik Patel (Profitgyan)
IIM-Ahmedbad Presenation for Finance Sucess story By Pratik Patel (Profitgyan)
Pratik Patel
 
REAL ESTATE: Premier VIP Seller
REAL ESTATE: Premier VIP SellerREAL ESTATE: Premier VIP Seller
REAL ESTATE: Premier VIP Seller
diorexecutive
 
intelligent ambulance system idea
intelligent ambulance system idea intelligent ambulance system idea
intelligent ambulance system idea
Nishanth Smartboy
 
Novattro пэт материал для любого уровня подготовки
Novattro пэт   материал для любого уровня подготовки Novattro пэт   материал для любого уровня подготовки
Novattro пэт материал для любого уровня подготовки
SafPlast
 
Laporan kunjungan kewirausahaan
Laporan kunjungan kewirausahaanLaporan kunjungan kewirausahaan
Laporan kunjungan kewirausahaan
Faqih Motionet
 
Chap 8 thiols and sulfides (1)
Chap 8 thiols and sulfides (1)Chap 8 thiols and sulfides (1)
Chap 8 thiols and sulfides (1)
Melvy Dela Torre
 
Nike Marketing Analysis
Nike Marketing AnalysisNike Marketing Analysis
Nike Marketing Analysis
Phil Barnes
 
Adidas Integrated marketing Communication campaign
Adidas Integrated marketing Communication campaignAdidas Integrated marketing Communication campaign
Adidas Integrated marketing Communication campaign
Sameer10031993
 

Similar to Appendix of heterogeneous cellular network user distribution model (20)

Muchtadi
MuchtadiMuchtadi
Muchtadi
Niranjan Patidar
 
HSFC Physics formula sheet
HSFC Physics formula sheetHSFC Physics formula sheet
HSFC Physics formula sheet
oneill95
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
VjekoslavKovac1
 
Stein's method for functional Poisson approximation
Stein's method for functional Poisson approximationStein's method for functional Poisson approximation
Stein's method for functional Poisson approximation
Laurent Decreusefond
 
Ec gate'13
Ec gate'13Ec gate'13
Ec gate'13
Mallesham Pasu
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
manish katara
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
Alexander Litvinenko
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
VjekoslavKovac1
 
Kumegawa russia
Kumegawa russiaKumegawa russia
Kumegawa russia
Kazuki Kumegawa
 
solution manual of goldsmith wireless communication
solution manual of goldsmith wireless communicationsolution manual of goldsmith wireless communication
solution manual of goldsmith wireless communication
NIT Raipur
 
ENHANCEMENT OF TRANSMISSION RANGE ASSIGNMENT FOR CLUSTERED WIRELESS SENSOR NE...
ENHANCEMENT OF TRANSMISSION RANGE ASSIGNMENT FOR CLUSTERED WIRELESS SENSOR NE...ENHANCEMENT OF TRANSMISSION RANGE ASSIGNMENT FOR CLUSTERED WIRELESS SENSOR NE...
ENHANCEMENT OF TRANSMISSION RANGE ASSIGNMENT FOR CLUSTERED WIRELESS SENSOR NE...
IJCNCJournal
 
A Note on PCVB0 for HDP-LDA
A Note on PCVB0 for HDP-LDAA Note on PCVB0 for HDP-LDA
A Note on PCVB0 for HDP-LDA
Tomonari Masada
 
The Fundamental Solution of an Extension to a Generalized Laplace Equation
The Fundamental Solution of an Extension to a Generalized Laplace EquationThe Fundamental Solution of an Extension to a Generalized Laplace Equation
The Fundamental Solution of an Extension to a Generalized Laplace Equation
Johnathan Gray
 
Me paper gate solved 2013
Me paper gate solved   2013Me paper gate solved   2013
Me paper gate solved 2013
Nishant Patil
 
Topic modeling with Poisson factorization (2)
Topic modeling with Poisson factorization (2)Topic modeling with Poisson factorization (2)
Topic modeling with Poisson factorization (2)
Tomonari Masada
 
対応点を用いないローリングシャッタ歪み補正と映像安定化論文
対応点を用いないローリングシャッタ歪み補正と映像安定化論文対応点を用いないローリングシャッタ歪み補正と映像安定化論文
対応点を用いないローリングシャッタ歪み補正と映像安定化論文
doboncho
 
The power and Arnoldi methods in an algebra of circulants
The power and Arnoldi methods in an algebra of circulantsThe power and Arnoldi methods in an algebra of circulants
The power and Arnoldi methods in an algebra of circulants
David Gleich
 
Data Structures and algorithms using dynamicProgramming
Data Structures and algorithms using dynamicProgrammingData Structures and algorithms using dynamicProgramming
Data Structures and algorithms using dynamicProgramming
umarashik727
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
VjekoslavKovac1
 
lecture6.ppt
lecture6.pptlecture6.ppt
lecture6.ppt
AbhiYadav655132
 
HSFC Physics formula sheet
HSFC Physics formula sheetHSFC Physics formula sheet
HSFC Physics formula sheet
oneill95
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
VjekoslavKovac1
 
Stein's method for functional Poisson approximation
Stein's method for functional Poisson approximationStein's method for functional Poisson approximation
Stein's method for functional Poisson approximation
Laurent Decreusefond
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
manish katara
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
Alexander Litvinenko
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
VjekoslavKovac1
 
solution manual of goldsmith wireless communication
solution manual of goldsmith wireless communicationsolution manual of goldsmith wireless communication
solution manual of goldsmith wireless communication
NIT Raipur
 
ENHANCEMENT OF TRANSMISSION RANGE ASSIGNMENT FOR CLUSTERED WIRELESS SENSOR NE...
ENHANCEMENT OF TRANSMISSION RANGE ASSIGNMENT FOR CLUSTERED WIRELESS SENSOR NE...ENHANCEMENT OF TRANSMISSION RANGE ASSIGNMENT FOR CLUSTERED WIRELESS SENSOR NE...
ENHANCEMENT OF TRANSMISSION RANGE ASSIGNMENT FOR CLUSTERED WIRELESS SENSOR NE...
IJCNCJournal
 
A Note on PCVB0 for HDP-LDA
A Note on PCVB0 for HDP-LDAA Note on PCVB0 for HDP-LDA
A Note on PCVB0 for HDP-LDA
Tomonari Masada
 
The Fundamental Solution of an Extension to a Generalized Laplace Equation
The Fundamental Solution of an Extension to a Generalized Laplace EquationThe Fundamental Solution of an Extension to a Generalized Laplace Equation
The Fundamental Solution of an Extension to a Generalized Laplace Equation
Johnathan Gray
 
Me paper gate solved 2013
Me paper gate solved   2013Me paper gate solved   2013
Me paper gate solved 2013
Nishant Patil
 
Topic modeling with Poisson factorization (2)
Topic modeling with Poisson factorization (2)Topic modeling with Poisson factorization (2)
Topic modeling with Poisson factorization (2)
Tomonari Masada
 
対応点を用いないローリングシャッタ歪み補正と映像安定化論文
対応点を用いないローリングシャッタ歪み補正と映像安定化論文対応点を用いないローリングシャッタ歪み補正と映像安定化論文
対応点を用いないローリングシャッタ歪み補正と映像安定化論文
doboncho
 
The power and Arnoldi methods in an algebra of circulants
The power and Arnoldi methods in an algebra of circulantsThe power and Arnoldi methods in an algebra of circulants
The power and Arnoldi methods in an algebra of circulants
David Gleich
 
Data Structures and algorithms using dynamicProgramming
Data Structures and algorithms using dynamicProgrammingData Structures and algorithms using dynamicProgramming
Data Structures and algorithms using dynamicProgramming
umarashik727
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
VjekoslavKovac1
 

Recently uploaded (20)

Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025
Antonin Danalet
 
22PCOAM16 Unit 3 Session 23 Different ways to Combine Classifiers.pptx
22PCOAM16 Unit 3 Session 23  Different ways to Combine Classifiers.pptx22PCOAM16 Unit 3 Session 23  Different ways to Combine Classifiers.pptx
22PCOAM16 Unit 3 Session 23 Different ways to Combine Classifiers.pptx
Guru Nanak Technical Institutions
 
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdfLittle Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
gori42199
 
VISHAL KUMAR SINGH Latest Resume with updated details
VISHAL KUMAR SINGH Latest Resume with updated detailsVISHAL KUMAR SINGH Latest Resume with updated details
VISHAL KUMAR SINGH Latest Resume with updated details
Vishal Kumar Singh
 
698642933-DdocfordownloadEEP-FAKE-PPT.pptx
698642933-DdocfordownloadEEP-FAKE-PPT.pptx698642933-DdocfordownloadEEP-FAKE-PPT.pptx
698642933-DdocfordownloadEEP-FAKE-PPT.pptx
speedcomcyber25
 
22PCOAM16 ML Unit 3 Full notes PDF & QB.pdf
22PCOAM16 ML Unit 3 Full notes PDF & QB.pdf22PCOAM16 ML Unit 3 Full notes PDF & QB.pdf
22PCOAM16 ML Unit 3 Full notes PDF & QB.pdf
Guru Nanak Technical Institutions
 
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdfSmart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
PawachMetharattanara
 
OPTIMIZING DATA INTEROPERABILITY IN AGILE ORGANIZATIONS: INTEGRATING NONAKA’S...
OPTIMIZING DATA INTEROPERABILITY IN AGILE ORGANIZATIONS: INTEGRATING NONAKA’S...OPTIMIZING DATA INTEROPERABILITY IN AGILE ORGANIZATIONS: INTEGRATING NONAKA’S...
OPTIMIZING DATA INTEROPERABILITY IN AGILE ORGANIZATIONS: INTEGRATING NONAKA’S...
ijdmsjournal
 
Automatic Quality Assessment for Speech and Beyond
Automatic Quality Assessment for Speech and BeyondAutomatic Quality Assessment for Speech and Beyond
Automatic Quality Assessment for Speech and Beyond
NU_I_TODALAB
 
AI Chatbots & Software Development Teams
AI Chatbots & Software Development TeamsAI Chatbots & Software Development Teams
AI Chatbots & Software Development Teams
Joe Krall
 
David Boutry - Specializes In AWS, Microservices And Python
David Boutry - Specializes In AWS, Microservices And PythonDavid Boutry - Specializes In AWS, Microservices And Python
David Boutry - Specializes In AWS, Microservices And Python
David Boutry
 
Construction Materials (Paints) in Civil Engineering
Construction Materials (Paints) in Civil EngineeringConstruction Materials (Paints) in Civil Engineering
Construction Materials (Paints) in Civil Engineering
Lavish Kashyap
 
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
PawachMetharattanara
 
Slide share PPT of NOx control technologies.pptx
Slide share PPT of  NOx control technologies.pptxSlide share PPT of  NOx control technologies.pptx
Slide share PPT of NOx control technologies.pptx
vvsasane
 
[PyCon US 2025] Scaling the Mountain_ A Framework for Tackling Large-Scale Te...
[PyCon US 2025] Scaling the Mountain_ A Framework for Tackling Large-Scale Te...[PyCon US 2025] Scaling the Mountain_ A Framework for Tackling Large-Scale Te...
[PyCon US 2025] Scaling the Mountain_ A Framework for Tackling Large-Scale Te...
Jimmy Lai
 
860556374-10280271.pptx PETROLEUM COKE CALCINATION PLANT
860556374-10280271.pptx PETROLEUM COKE CALCINATION PLANT860556374-10280271.pptx PETROLEUM COKE CALCINATION PLANT
860556374-10280271.pptx PETROLEUM COKE CALCINATION PLANT
Pierre Celestin Eyock
 
AI-Powered Data Management and Governance in Retail
AI-Powered Data Management and Governance in RetailAI-Powered Data Management and Governance in Retail
AI-Powered Data Management and Governance in Retail
IJDKP
 
IBAAS 2023 Series_Lecture 8- Dr. Nandi.pdf
IBAAS 2023 Series_Lecture 8- Dr. Nandi.pdfIBAAS 2023 Series_Lecture 8- Dr. Nandi.pdf
IBAAS 2023 Series_Lecture 8- Dr. Nandi.pdf
VigneshPalaniappanM
 
Unleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptx
Unleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptxUnleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptx
Unleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptx
SanjeetMishra29
 
Urban Transport Infrastructure September 2023
Urban Transport Infrastructure September 2023Urban Transport Infrastructure September 2023
Urban Transport Infrastructure September 2023
Rajesh Prasad
 
Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025
Antonin Danalet
 
22PCOAM16 Unit 3 Session 23 Different ways to Combine Classifiers.pptx
22PCOAM16 Unit 3 Session 23  Different ways to Combine Classifiers.pptx22PCOAM16 Unit 3 Session 23  Different ways to Combine Classifiers.pptx
22PCOAM16 Unit 3 Session 23 Different ways to Combine Classifiers.pptx
Guru Nanak Technical Institutions
 
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdfLittle Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
gori42199
 
VISHAL KUMAR SINGH Latest Resume with updated details
VISHAL KUMAR SINGH Latest Resume with updated detailsVISHAL KUMAR SINGH Latest Resume with updated details
VISHAL KUMAR SINGH Latest Resume with updated details
Vishal Kumar Singh
 
698642933-DdocfordownloadEEP-FAKE-PPT.pptx
698642933-DdocfordownloadEEP-FAKE-PPT.pptx698642933-DdocfordownloadEEP-FAKE-PPT.pptx
698642933-DdocfordownloadEEP-FAKE-PPT.pptx
speedcomcyber25
 
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdfSmart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
PawachMetharattanara
 
OPTIMIZING DATA INTEROPERABILITY IN AGILE ORGANIZATIONS: INTEGRATING NONAKA’S...
OPTIMIZING DATA INTEROPERABILITY IN AGILE ORGANIZATIONS: INTEGRATING NONAKA’S...OPTIMIZING DATA INTEROPERABILITY IN AGILE ORGANIZATIONS: INTEGRATING NONAKA’S...
OPTIMIZING DATA INTEROPERABILITY IN AGILE ORGANIZATIONS: INTEGRATING NONAKA’S...
ijdmsjournal
 
Automatic Quality Assessment for Speech and Beyond
Automatic Quality Assessment for Speech and BeyondAutomatic Quality Assessment for Speech and Beyond
Automatic Quality Assessment for Speech and Beyond
NU_I_TODALAB
 
AI Chatbots & Software Development Teams
AI Chatbots & Software Development TeamsAI Chatbots & Software Development Teams
AI Chatbots & Software Development Teams
Joe Krall
 
David Boutry - Specializes In AWS, Microservices And Python
David Boutry - Specializes In AWS, Microservices And PythonDavid Boutry - Specializes In AWS, Microservices And Python
David Boutry - Specializes In AWS, Microservices And Python
David Boutry
 
Construction Materials (Paints) in Civil Engineering
Construction Materials (Paints) in Civil EngineeringConstruction Materials (Paints) in Civil Engineering
Construction Materials (Paints) in Civil Engineering
Lavish Kashyap
 
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
PawachMetharattanara
 
Slide share PPT of NOx control technologies.pptx
Slide share PPT of  NOx control technologies.pptxSlide share PPT of  NOx control technologies.pptx
Slide share PPT of NOx control technologies.pptx
vvsasane
 
[PyCon US 2025] Scaling the Mountain_ A Framework for Tackling Large-Scale Te...
[PyCon US 2025] Scaling the Mountain_ A Framework for Tackling Large-Scale Te...[PyCon US 2025] Scaling the Mountain_ A Framework for Tackling Large-Scale Te...
[PyCon US 2025] Scaling the Mountain_ A Framework for Tackling Large-Scale Te...
Jimmy Lai
 
860556374-10280271.pptx PETROLEUM COKE CALCINATION PLANT
860556374-10280271.pptx PETROLEUM COKE CALCINATION PLANT860556374-10280271.pptx PETROLEUM COKE CALCINATION PLANT
860556374-10280271.pptx PETROLEUM COKE CALCINATION PLANT
Pierre Celestin Eyock
 
AI-Powered Data Management and Governance in Retail
AI-Powered Data Management and Governance in RetailAI-Powered Data Management and Governance in Retail
AI-Powered Data Management and Governance in Retail
IJDKP
 
IBAAS 2023 Series_Lecture 8- Dr. Nandi.pdf
IBAAS 2023 Series_Lecture 8- Dr. Nandi.pdfIBAAS 2023 Series_Lecture 8- Dr. Nandi.pdf
IBAAS 2023 Series_Lecture 8- Dr. Nandi.pdf
VigneshPalaniappanM
 
Unleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptx
Unleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptxUnleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptx
Unleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptx
SanjeetMishra29
 
Urban Transport Infrastructure September 2023
Urban Transport Infrastructure September 2023Urban Transport Infrastructure September 2023
Urban Transport Infrastructure September 2023
Rajesh Prasad
 

Appendix of heterogeneous cellular network user distribution model

  • 1. Appendix of Heterogeneous Cellular Network User Distribution Model Chao Li, Abbas Yongacoglu, and Claude D’Amours School of Electrical Engineering and Computer Science University of Ottawa Ottawa, ON, K1N 6N5, CA Email: {cli026, yongac, cdamours}@uottawa.ca APPENDIX A. Proof of Lemma 1 The probability that a user associates with the BS in kth tier (conditioned that the distance between this user to its associated BS is d) is P|d(Ak) (a) = P|d[PBRPk > any PBRPi i=1:K,i=k ] (b) = K i=1,i=k P|d[PBRPk > PBRPi ] = K i=1,i=k P|d[PkCkd−αk > PiCid−αi i ] = K i=1,i=k P|d[di > ( PiCi PkCk ) 1 αi · d αk αi ] (c) = K i=1,i=k exp( −λiπ( PiCi PkCk ) 2 αi ·d 2αk αi ) where (a) is for the user connectivity model that is the maximum average bias received power connectivity model. If the user associates with its BS in kth tier, PBRPk =PkCkd−αk is the maximum average bias received power compared with PBRPi =PiCid−αi i in other tiers. (b) is because each tier is independent and it is the joint probability of all the other tiers except kth tier. (c) assumes that the R is the distance between this user to its closest interference in ith tier. For the ith tier BS, their spatial distribution is Poisson point process. So the probability P[di > R] above is the null probability, which is e(−λiπR2 ) in the circle area πR2 . The above proof is almost similar with [1]. Here only the conditional associated probability is needed. B. Proof of Lemma 2 The probability density function (PDF) of the distance d between the user and its associated kth tier BS includes two parts. One is the PDF fref (d) because BSs are with PPP distribution of the density λk. The other is the user density fdenk (d) in kth tier we defined. fdenk (d) can be any non- uniform user density function such as fdenLin (d), fdenExp (d) and fdenGau (d) adjusted by the experimentally obtained gain GT un. If there are no users on kth tiers, the corresponding fdenk (d)=0. fref (d) (a) = exp(−λkπd2 ) · 2λkπd fk(d) = fref (d) · fdenk (d) = exp(−λkπd2 ) · 2λkπd · fdenk (d) where (a) is the PDF of the distance d to the associated BS with PPP of the density λk from [2]. C. Proof of Lemma 3 The proof is almost the same to [1]. Here give the detailed proof again for reference. P|d[SINRk(d) > Tk|Ak] = P|d[ PkGkd −αk Ir + σ2 L0 > Tk] = P|d[Gk > (Ir + σ2 L0 )TkPk −1 dαk ] = EIr (P|d[Gk > (Ir + σ2 L0 )TkPk −1 dαk ]) (a) = EIr [exp(−(Ir + σ2 L0 )TkPk −1 dαk )] = exp(− σ2 L0 TkPk −1 dαk )EIr [exp(−IrTkPk −1 dαk )] (b) = exp(− σ2 L0 TkPk −1 dαk ) K i=1 EIri [exp(−IriTkPk −1 dαk )] (c) = exp(− σ2 L0 TkPk −1 dαk ) K i=1 LIri (TkPk −1 dαk ) where (a) is from the assumption of the channel fading envelope is Rayleigh fading. So Gk is random fading channel power which is exponential distributed with the unity mean. (b) comes from Ir = K i=1 Iri. (c) gives the definition of Laplace transform Lx(s) = Ex[e−xs ]. Ex[∗] is the expectation of ∗ over x.
  • 2. D. Proof of Lemma 4 The Laplace transform of the interference in ith tier is LIri (s) (a) = exp(πλiDi 2 ) · exp(−πλiDi 2 Ek(e−skDi −αi ))· exp(−πλis 2 αi Ek(k 2 αi Γ(1 − 2 αi )))· exp(πλis 2 αi Ek(k 2 αi Γ(1 − 2 αi , skDi −αi ))) (b) = exp(πλiDi 2 ) · exp(−πλiDi 2 EG(e−sPiGiDi −αi ))· exp(−πλis 2 αi EG((PiGi) 2 αi Γ(1 − 2 αi )))· exp(πλis 2 αi EG((PiGi) 2 αi Γ(1 − 2 αi , sPiGiDi −αi ))) (c) = exp(πλiDi 2 ) · exp(−πλiDi 2 LG(sPiD−αi i )) · Mi(s) (d) = exp(πλiDi 2 ) · exp( −πλiDi 2 1 + sPiD−αi i ) · Mi(s) The detail explanation of the above equation in each step is as follows. (a) gives the Laplace transform of the interference based on the decay power law impulse response function f(k, r) = kr−α , r ≥ 1 [3]. Γ(t) = ∞ 0 xt−1 e−x dx is gamma function. (b) updates response function f(k, r) = kr−α into f(G, r) = PiGir−α . (c) shows that the key part of the derivation of LIri is the calculation of Mi(s). (d) comes from LG, which is the Laplace transform of exponential channel power gain (LG(s) = 1 1+s [4]). Mi(s) = exp(−πλis 2 αi EG((PiGi) 2 αi Γ(1 − 2 αi )))· exp(πλis 2 αi EG((PiGi) 2 αi Γ(1 − 2 αi , sPiGiDi −αi ))) (a) = exp(−πλis 2 αi EG((PiGi) 2 αi · Γ(1 − 2 αi )(sPiGiDi −αi ) 1− 2 αi e−sPiGiDi −αi · ∞ n=0 (sPiGiDi −αi )n Γ(2 + n − 2 αi ) )) = exp(−πλiΓ(1 − 2 αi )Di 2 · ∞ n=0 (sPiDi −αi )n+1 EG(Gn+1 i · e−sPiGiDi −αi ) Γ(2 + n − 2 αi ) ) (b) = exp(−πλiΓ(1 − 2 αi )Di 2 · ∞ n=0 (sPiDi −αi )n+1 Γ(n + 2) Γ(2 + n − 2 αi ) · (sPiDi −αi + 1)−n−2 ) = exp(−πλiΓ(1 − 2 αi )Di 2 · sPiDi −αi (sPiDi −αi + 1)2 · ∞ n=0 Γ(n + 2) Γ(2 + n − 2 αi ) · ( sPiDi −αj sPiDi −αi + 1 )n ) (c) = exp(−πλiΓ(1 − 2 αi )Di 2 sPiDi −αi (sPiDi −αi + 1)2 · Γ(2) Γ(2 − 2 αi ) · 2F1(2, 1, 2 − 2 αj ; sPiDi −αi sPiDi −αi + 1 )) = exp(−πλiDi 2 (1 − 2 αi )−1 sPiDi −αi (sPiDi −αj + 1)2 · 2F1(2, 1, 2 − 2 αi ; sPiDi −αi sPiDi −αi + 1 )) The detail explanation of the above equation in each step is as follows. (a) comes from [5] and [6] about the gamma function property Γ(a, x) = Γ(a) − Γ(a)xa e−x ∞ n=0 xn Γ(a+n+1) . (b) gives the expectation item of exponential power gain EG(Gn+1 i · e−sPiGiDi −αi ) = ∞ 0 Gn+1 e−sPiDi −αi fG(G)dG, fG(G) is the PDF of channel power gain G. fG(G) = e−G when G is exponential distributed. So EG = ∞ 0 Gn+1 e−sPiDi −αi e−G dG. After simplification, EG(Gn+1 i · e−sPiGiDi −αi ) = (sPiDi −αi + 1)−n−2 Γ(n + 2). (c) is from [5]. Γ(a) Γ(c) ·2F1(a, 1, c : z) = ∞ n=0 Γ(a+n) Γ(c+n) · zn . 2F1(.) is the Gauss hypergeometric function. Hence, Laplace transform of total interference in the ith tier is LIri (s) = exp(πλiDi 2 ) · exp( −πλiDi 2 1 + Ri )· exp(−πλiDi 2 (1 − 2 αi )−1 Ri (Ri + 1)2 · 2F1(2, 1, 2 − 2 αj ; Ri Ri + 1 )) where Ri is sPiDi −αi . λi is ith tier BS density. Di is ( PiCi PkCk ) 1 αi d αk αi and it is the minimum distance from the closest interfering BS in ith tier. For the detailed proof about this min- imum distance refer to [1]. 2F1(.) is the Gauss hypergeometric function. Ci is biased factor in ith tier. A bias factor greater than unity enables the cells to have an incrementally larger coverage area and higher load. E. Proof of Theorem The coverage probability for non-uniform user model is as follows. Pc = Ed[ K k=1 P|d[SINRk(d) > Tk|Ak] · P|d(Ak)] = K k=1 ∞ d=0 P|d[SINRik(d) > Tk|Ak] · P|d(Ak)· fk(d) dd = K k=1 Pck where fk(d) is the PDF of the distance d.
  • 3. The coverage probability associating with the kth tier BS is Pck = ∞ d=0 P|d[SINRk(d) > Tk|Ak] · P|d(Ak) · fk(d) dd = ∞ d=0 exp(− σ2 L0 TkPk −1 dαk ) K i=1 LIri (TkPk −1 dαk )· P|d(Ak) · fk(d)dd = ∞ d=0 exp(− σ2 L0 TkPk −1 dαk ) K i=1 LIri (TkPk −1 dαk )· K i=1,i=k exp(−λiπ( PiCi PkCk ) 2 αi · d 2αk αi ) · exp(−λkπd2 )· 2λkπd · fdenk (d) dd = ∞ d=0 exp(− σ2 L0 TkPk −1 dαk ) K i=1 LIri (TkPk −1 dαk )· K i=1 exp(−λiπ( PiCi PkCk ) 2 αi · d 2αk αi ) · 2λkπd · fdenk (d) dd REFERENCES [1] H.-S. Jo, Y. J. Sang, P. Xia, and J. G. Andrews, “Heterogeneous cellular networks with flexible cell association: A comprehensive downlink sinr analysis,” Wireless Communications, IEEE Transactions on, vol. 11, no. 10, pp. 3484–3495, 2012. [2] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to cov- erage and rate in cellular networks,” Communications, IEEE Transactions on, vol. 59, no. 11, pp. 3122–3134, 2011. [3] J. Venkataraman, M. Haenggi, and O. Collins, “Shot noise models for outage and throughput analyses in wireless ad hoc networks,” in Military Communications Conference, 2006. MILCOM 2006. IEEE. IEEE, 2006, pp. 1–7. [4] F. Yilmaz and M.-S. Alouini, “A novel unified expression for the capacity and bit error probability of wireless communication systems over generalized fading channels,” IEEE Transactions on Communications, vol. 60, no. 7, pp. 1862–1876, 2012. [5] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation, 1964, vol. 55. [6] M. Di Renzo, A. Guidotti, and G. E. Corazza, “Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach,” Communications, IEEE Transactions on, vol. 61, no. 7, pp. 3050–3071, 2013.
  翻译: