SlideShare a Scribd company logo
Modeling Dynamic Systems
• Basic Quantities From Earthquake Records
• Fourier Transform, Frequency Domain
• Single Degree of Freedom Systems (SDOF)
Elastic Response Spectra
• Multi-Degree of Freedom Systems, (MDOF)
Modal Analysis
• Dynamic Analysis by Modal Methods
• Method of Complex Response
Earthquake Records
Numerical Concept
Acceleration vs. Time
Acceleration vs. Time

4.0000E-01
3.0000E-01
2.0000E-01

Accel (g)

1.0000E-01
0.0000E+00
-1.0000E-01
-2.0000E-01
-3.0000E-01
-4.0000E-01
0.00

10.00

20.00

30.00

40.00

50.00

Time (sec)

60.00

70.00

80.00

90.00
Acceleration vs. Time, t=16.00 tot=16 to 20 sec
vs Time 20.00 seconds
Acceleration
4.0000E-01
3.0000E-01
2.0000E-01

Accel (g)

1.0000E-01
0.0000E+00
-1.0000E-01
-2.0000E-01
-3.0000E-01
-4.0000E-01
16.00

16.50

17.00

17.50

18.00
Time (sec)

18.50

19.00

19.50

20.00
Harmonic Motion
t = time

A = amplitude of wave
ω = frequency (radians / sec) SDOF Response
1.00E-02
8.00E-03
6.00E-03

X=A sin(ωt-φ)

Displ. (m)

4.00E-03
Amplitude

2.00E-03
0.00E+00

φ = phase lag (radians )
Mass = 10.132 kg
Damping = 0.00
Spring = 1.0 N/m
ωn=√k/m=0.314 r/s
Drive Freq = 0.0
Drive Force = 0.0 N
Initial Vel. = 0.0
m/s
Initial Disp. = 0.01 m

-2.00E-03
-4.00E-03
-6.00E-03
Period=1/Frequency

-8.00E-03
-1.00E-02
0.000

5.000

10.000

15.000

20.000
time (sec)

25.000

30.000

35.000

40.000
Fourier Transform
2π s
ωS =
N ∆t

N /2


(t ) = Re ∑ X s e iωS t
x
s =0

1 N −1  e −iωS k∆t

,
∑ xk
 N k =0
 = 
X S  N −1
−iω k∆t
2
k e S ,
x
N∑
 k =0

e

− iωS k∆t

N
s = 0,1, 2,...,
2

N
2


N 
for 1 ≤ s <
2 


for s = 0, s =

= cos(ωS k∆t ) − i sin(ωS k∆t )




Mag X S = ℜX + ℑX
2
S

2
S


 ℑX S
φ = tan 
 ℜX

S

−1





Fourier Transform; El Centro
Fourier Transform of El Centro Accleration Record

0.008
0.007
0.006

Magnitude

0.005
0.004
0.003
0.002
0.001
0
0

20

40

60
Circular Frequency, v

80

100

120
Earthquake Elastic Response Spectra
P0 sin(ωt )
x

xt

m
c

k/2

m

x
k/2

c

k/2

k/2

xg

(a)

m + cx + kx = P0 sin(ω t )
x 

m + mg + cx + kx = 0 or
x
x
ωn =

k
m

(b)

D = c / ccrit

c crit = km

m + cx + kx = − mg = Pearthquake (t )
x 
x

undamped systems; ωd =

k
(1 − D 2 ) damped systems
m
Duhamel's Integral
t

p(τ)

dx (t ) = e

−ξ (1) ( t −τ )

t

1
x(t ) =
mω D

 p (τ )dτ

sin ω D (t − τ )

 mω D


p(τ ) e −ξω (t −τ ) sin ω D (t − τ ) dτ
∫
0

x(t ) = A(t ) sin ω D t − B(t ) cos ω D t
t

t

1
eξωτ
1
eξωτ
A(t ) =
∫ p(τ ) eξωt cos ωD τ dτ B(t ) = mωD ∫ p(t ) eξωt sin ωD τ dτ
mωD 0
0
A
∆τ 1 A
 A

A(t ) =

∑ (t ) ∑ (t ) = ∑ (t − ∆τ ) + p(t − ∆τ ) cos ωD (t − ∆τ )
mωD ζ ζ
2
 2

exp(−ξω∆τ ) + p(t ) cos ωD t
Elastic Response Spectrum
7.00E-02

Displacement Response Spectrum
El Centro, 1940 E-W

6.00E-02

Displacement (m)

5.00E-02
D=0.0
4.00E-02

D=0.02
D=0.05

3.00E-02

2.00E-02

1.00E-02

0.00E+00
1.00E-01

1.00E+00

1.00E+01
Frequency (rad/sec)

1.00E+02
Multi-Degree of Freedom
x3

m3
c3

k3 /2

x2

k1/2

k3/2

c2

k2/2

m1
c1

k1/2

y3

y2

m + cx + kx = p(t)
x 

y4

y1

y5

θ1
(a)

k12  k1N   x1 
k 22  k 2 N   x2 
 
 
  
  
 
ki 2  kiN   xi 

kij = force corresponding to coordinate i
due to unit displacement of coordinate j
cij = force corresponding to coordinate i
due to unit velocity of coordinate j
mij = force corresponding to coordinate i
due to unit acceleration of coordinate j

m2

k2/2

x1

 f S 1   k11
 f  k
 S 2   21
 =
   
 f Si   ki1
  

θ2

θ3
(b)

θ4

θ5
Modal Analysis

m + kx = p(t)
x

mΦX + kΦX = p(t )

T
T
T

φ n mΦX + φ n kΦX = φ n p(t)
T
T
T

φ n mφ n X n + φ n kφ n X n = φ n p(t)


M n X n + K n X n = Pn (t )
Modal Damping


M n X n + C n X n + K n X n = Pn (t )
 + 2ξ ω X + K X = Pn (t )

Xn
n n
n
n
n
Mn
T
M n ≡ φ n mφ n

T
C n ≡ φ n cφ n

T
K n ≡ φ n kφ n

c = a 0 m + a1k
C nb = φ T c b φ n = ab φ T m[m −1 k ]b φ n
n
n

T
Pn (t ) ≡ φ n p(t )
FEM Frequency Domain


[ M ]{ u} + [ K ]{ u} = { p} e

iωt

{ u} = { U} e then
{[ K ] − ω 2 [ M ]}{ U} = {p}
i ωt
Finite Elements
u1

u7
G1,ρ1,ν1

u2

u8

[ K1 ] = fn(G1 , ρ1 ,ν 1 )
[ m1 ] = fn( ρ1 )
ui = ai x + bi y + c

 k1,1
k
 2,1


k
 7 ,1
k8,1


k1, 2
k 2, 2

k1, 7
k 2, 7

k7, 2
k8, 2

k7,7
k8, 7

k1,8 u1 
k 2,8 u2 
 
 
 
k7 ,8 u7 
 
k8,8 u8 
 

ε = constant
σ = constant

[ M ]{ u} + [ K ]{ u} = { p} eiωt
m1

m2







m3
m4


  u1   k1,1 k1, 2
 u   k

k
  2   2,1 2, 2
 
 u3  +  k3,1 k3, 2

  

k 4, 2
 u4  
m5  u5  
    

k1,3
k 2,3

k 2, 4

k 3, 3

k 3, 4

k 4,3

k 4, 4

k 5, 3

k 5, 4

  u1   p1 
   
 u2   p2 
   
k3,5  u3  =  p3 eiωt

k 4,5  u4   p4 
   
k5,5  u5   p5 
   


if { u} = { U} e iωt then { u} = −ω 2 { U} e iωt and

{[ K ] − ω [ M ]}{ U} = {p} given ω, {p}, solve for { U}
2

[ K ], { U} are complex − valued

(

G* = G 1 − 2 D 2 + 2iD 1 − D 2

)
Method of Complex Response
• Given earthquake acceleration vs. time, ü(t)
• FFT => ω1, ω 2 , ω 3...ωn ; {p}1 ,{p}2 ,{p}3,{p}n
N /2

• Recall that


(t ) = Re ∑ X s e iωS t
x
s =0

{ [ K ] − ω [ M ] } { U} = {p}
2

• Solve
• FFT-1 => ü (t)
212,428 nodes, 189,078 brick elements and 1500 shell elements
Circular boundary to reduce reflections
Ray : modeling dynamic systems
Finite Element Model of Three-Bent Bridge
Zoom 1

Zoom 2
Ray : modeling dynamic systems
Ray : modeling dynamic systems
Ad

More Related Content

What's hot (18)

Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Alessandro Palmeri
 
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian ProcessesAccelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Matt Moores
 
07 periodic functions and fourier series
07 periodic functions and fourier series07 periodic functions and fourier series
07 periodic functions and fourier series
Krishna Gali
 
EE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheetEE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheet
Haris Hassan
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
Alessandro Palmeri
 
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic Signals
Attaporn Ninsuwan
 
Chris Sherlock's slides
Chris Sherlock's slidesChris Sherlock's slides
Chris Sherlock's slides
Christian Robert
 
Master method theorem
Master method theoremMaster method theorem
Master method theorem
Rajendran
 
Jere Koskela slides
Jere Koskela slidesJere Koskela slides
Jere Koskela slides
Christian Robert
 
SPSF02 - Graphical Data Representation
SPSF02 - Graphical Data RepresentationSPSF02 - Graphical Data Representation
SPSF02 - Graphical Data Representation
Syeilendra Pramuditya
 
Notes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.modelNotes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.model
sun peiyuan
 
SPSF03 - Numerical Integrations
SPSF03 - Numerical IntegrationsSPSF03 - Numerical Integrations
SPSF03 - Numerical Integrations
Syeilendra Pramuditya
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
Abi finni
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
Aamir Saeed
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
SEENET-MTP
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
Simen Li
 
Ece formula sheet
Ece formula sheetEce formula sheet
Ece formula sheet
Manasa Mona
 
Recurrences
RecurrencesRecurrences
Recurrences
Dr Sandeep Kumar Poonia
 
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Alessandro Palmeri
 
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian ProcessesAccelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Matt Moores
 
07 periodic functions and fourier series
07 periodic functions and fourier series07 periodic functions and fourier series
07 periodic functions and fourier series
Krishna Gali
 
EE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheetEE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheet
Haris Hassan
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
Alessandro Palmeri
 
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic Signals
Attaporn Ninsuwan
 
Master method theorem
Master method theoremMaster method theorem
Master method theorem
Rajendran
 
SPSF02 - Graphical Data Representation
SPSF02 - Graphical Data RepresentationSPSF02 - Graphical Data Representation
SPSF02 - Graphical Data Representation
Syeilendra Pramuditya
 
Notes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.modelNotes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.model
sun peiyuan
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
Abi finni
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
Aamir Saeed
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
SEENET-MTP
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
Simen Li
 
Ece formula sheet
Ece formula sheetEce formula sheet
Ece formula sheet
Manasa Mona
 

Similar to Ray : modeling dynamic systems (20)

Chapter 2
Chapter 2Chapter 2
Chapter 2
wafaa_A7
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
wafaa_A7
 
Presentation Sampling adn Reconstruction.pdf
Presentation Sampling adn Reconstruction.pdfPresentation Sampling adn Reconstruction.pdf
Presentation Sampling adn Reconstruction.pdf
werom2
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
Gaurav Vasani
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
Akira Tanimoto
 
Contemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualContemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manual
to2001
 
233_Sample-Chapter.pdf
233_Sample-Chapter.pdf233_Sample-Chapter.pdf
233_Sample-Chapter.pdf
Sampathkumar477190
 
233_Sample-Chapter (1).pdf
233_Sample-Chapter (1).pdf233_Sample-Chapter (1).pdf
233_Sample-Chapter (1).pdf
ssuser4dafea
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
Saravana Selvan
 
Sect5 4
Sect5 4Sect5 4
Sect5 4
inKFUPM
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
Alexander Litvinenko
 
Solutions for Exercises in Signals and Systems by Oktay Alkin
Solutions for Exercises in Signals and Systems by Oktay AlkinSolutions for Exercises in Signals and Systems by Oktay Alkin
Solutions for Exercises in Signals and Systems by Oktay Alkin
alvinbookfinder
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
Teja Ande
 
L5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeL5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shape
Sam Alalimi
 
Ch15 transforms
Ch15 transformsCh15 transforms
Ch15 transforms
douglaslyon
 
LINEAR SYSTEMS
LINEAR SYSTEMSLINEAR SYSTEMS
LINEAR SYSTEMS
JazzieJao1
 
A short remark on Feller’s square root condition.
A short remark on Feller’s square root condition.A short remark on Feller’s square root condition.
A short remark on Feller’s square root condition.
Ilya Gikhman
 
Fourier transform
Fourier transformFourier transform
Fourier transform
auttaponsripradit
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Alexander Litvinenko
 
residue
residueresidue
residue
Rob Arnold
 
Presentation Sampling adn Reconstruction.pdf
Presentation Sampling adn Reconstruction.pdfPresentation Sampling adn Reconstruction.pdf
Presentation Sampling adn Reconstruction.pdf
werom2
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
Gaurav Vasani
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
Akira Tanimoto
 
Contemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualContemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manual
to2001
 
233_Sample-Chapter (1).pdf
233_Sample-Chapter (1).pdf233_Sample-Chapter (1).pdf
233_Sample-Chapter (1).pdf
ssuser4dafea
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
Saravana Selvan
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
Alexander Litvinenko
 
Solutions for Exercises in Signals and Systems by Oktay Alkin
Solutions for Exercises in Signals and Systems by Oktay AlkinSolutions for Exercises in Signals and Systems by Oktay Alkin
Solutions for Exercises in Signals and Systems by Oktay Alkin
alvinbookfinder
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
Teja Ande
 
L5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeL5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shape
Sam Alalimi
 
LINEAR SYSTEMS
LINEAR SYSTEMSLINEAR SYSTEMS
LINEAR SYSTEMS
JazzieJao1
 
A short remark on Feller’s square root condition.
A short remark on Feller’s square root condition.A short remark on Feller’s square root condition.
A short remark on Feller’s square root condition.
Ilya Gikhman
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Alexander Litvinenko
 
Ad

More from Houw Liong The (20)

Museumgeologi 130427165857-phpapp02
Museumgeologi 130427165857-phpapp02Museumgeologi 130427165857-phpapp02
Museumgeologi 130427165857-phpapp02
Houw Liong The
 
Space weather
Space weather Space weather
Space weather
Houw Liong The
 
Research in data mining
Research in data miningResearch in data mining
Research in data mining
Houw Liong The
 
Indonesia
IndonesiaIndonesia
Indonesia
Houw Liong The
 
Canfis
CanfisCanfis
Canfis
Houw Liong The
 
Climate Change
Climate ChangeClimate Change
Climate Change
Houw Liong The
 
Space Weather
Space Weather Space Weather
Space Weather
Houw Liong The
 
Fisika komputasi
Fisika komputasiFisika komputasi
Fisika komputasi
Houw Liong The
 
Fisika & komputasi cerdas
Fisika & komputasi cerdasFisika & komputasi cerdas
Fisika & komputasi cerdas
Houw Liong The
 
Climate model
Climate modelClimate model
Climate model
Houw Liong The
 
Sharma : social networks
Sharma : social networksSharma : social networks
Sharma : social networks
Houw Liong The
 
Introduction to-graph-theory-1204617648178088-2
Introduction to-graph-theory-1204617648178088-2Introduction to-graph-theory-1204617648178088-2
Introduction to-graph-theory-1204617648178088-2
Houw Liong The
 
Chaper 13 trend, Han & Kamber
Chaper 13 trend, Han & KamberChaper 13 trend, Han & Kamber
Chaper 13 trend, Han & Kamber
Houw Liong The
 
Capter10 cluster basic : Han & Kamber
Capter10 cluster basic : Han & KamberCapter10 cluster basic : Han & Kamber
Capter10 cluster basic : Han & Kamber
Houw Liong The
 
Chapter 11 cluster advanced, Han & Kamber
Chapter 11 cluster advanced, Han & KamberChapter 11 cluster advanced, Han & Kamber
Chapter 11 cluster advanced, Han & Kamber
Houw Liong The
 
Web & text mining lecture10
Web & text mining lecture10Web & text mining lecture10
Web & text mining lecture10
Houw Liong The
 
Graph mining seminar_2009
Graph mining seminar_2009Graph mining seminar_2009
Graph mining seminar_2009
Houw Liong The
 
Chapter 11 cluster advanced : web and text mining
Chapter 11 cluster advanced : web and text miningChapter 11 cluster advanced : web and text mining
Chapter 11 cluster advanced : web and text mining
Houw Liong The
 
Chapter 09 classification advanced
Chapter 09 classification advancedChapter 09 classification advanced
Chapter 09 classification advanced
Houw Liong The
 
System dynamics prof nagurney
System dynamics prof nagurneySystem dynamics prof nagurney
System dynamics prof nagurney
Houw Liong The
 
Museumgeologi 130427165857-phpapp02
Museumgeologi 130427165857-phpapp02Museumgeologi 130427165857-phpapp02
Museumgeologi 130427165857-phpapp02
Houw Liong The
 
Research in data mining
Research in data miningResearch in data mining
Research in data mining
Houw Liong The
 
Fisika & komputasi cerdas
Fisika & komputasi cerdasFisika & komputasi cerdas
Fisika & komputasi cerdas
Houw Liong The
 
Sharma : social networks
Sharma : social networksSharma : social networks
Sharma : social networks
Houw Liong The
 
Introduction to-graph-theory-1204617648178088-2
Introduction to-graph-theory-1204617648178088-2Introduction to-graph-theory-1204617648178088-2
Introduction to-graph-theory-1204617648178088-2
Houw Liong The
 
Chaper 13 trend, Han & Kamber
Chaper 13 trend, Han & KamberChaper 13 trend, Han & Kamber
Chaper 13 trend, Han & Kamber
Houw Liong The
 
Capter10 cluster basic : Han & Kamber
Capter10 cluster basic : Han & KamberCapter10 cluster basic : Han & Kamber
Capter10 cluster basic : Han & Kamber
Houw Liong The
 
Chapter 11 cluster advanced, Han & Kamber
Chapter 11 cluster advanced, Han & KamberChapter 11 cluster advanced, Han & Kamber
Chapter 11 cluster advanced, Han & Kamber
Houw Liong The
 
Web & text mining lecture10
Web & text mining lecture10Web & text mining lecture10
Web & text mining lecture10
Houw Liong The
 
Graph mining seminar_2009
Graph mining seminar_2009Graph mining seminar_2009
Graph mining seminar_2009
Houw Liong The
 
Chapter 11 cluster advanced : web and text mining
Chapter 11 cluster advanced : web and text miningChapter 11 cluster advanced : web and text mining
Chapter 11 cluster advanced : web and text mining
Houw Liong The
 
Chapter 09 classification advanced
Chapter 09 classification advancedChapter 09 classification advanced
Chapter 09 classification advanced
Houw Liong The
 
System dynamics prof nagurney
System dynamics prof nagurneySystem dynamics prof nagurney
System dynamics prof nagurney
Houw Liong The
 
Ad

Recently uploaded (20)

MICROBIAL GENETICS -tranformation and tranduction.pdf
MICROBIAL GENETICS -tranformation and tranduction.pdfMICROBIAL GENETICS -tranformation and tranduction.pdf
MICROBIAL GENETICS -tranformation and tranduction.pdf
DHARMENDRA SAHU
 
Peer Assesment- Libby.docx..............
Peer Assesment- Libby.docx..............Peer Assesment- Libby.docx..............
Peer Assesment- Libby.docx..............
19lburrell
 
2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx
mansk2
 
MCQS (EMERGENCY NURSING) DR. NASIR MUSTAFA
MCQS (EMERGENCY NURSING) DR. NASIR MUSTAFAMCQS (EMERGENCY NURSING) DR. NASIR MUSTAFA
MCQS (EMERGENCY NURSING) DR. NASIR MUSTAFA
Dr. Nasir Mustafa
 
Final Evaluation.docx...........................
Final Evaluation.docx...........................Final Evaluation.docx...........................
Final Evaluation.docx...........................
l1bbyburrell
 
How to Use Upgrade Code Command in Odoo 18
How to Use Upgrade Code Command in Odoo 18How to Use Upgrade Code Command in Odoo 18
How to Use Upgrade Code Command in Odoo 18
Celine George
 
Unit 5 ACUTE, SUBACUTE,CHRONIC TOXICITY.pptx
Unit 5 ACUTE, SUBACUTE,CHRONIC TOXICITY.pptxUnit 5 ACUTE, SUBACUTE,CHRONIC TOXICITY.pptx
Unit 5 ACUTE, SUBACUTE,CHRONIC TOXICITY.pptx
Mayuri Chavan
 
How to Manage Manual Reordering Rule in Odoo 18 Inventory
How to Manage Manual Reordering Rule in Odoo 18 InventoryHow to Manage Manual Reordering Rule in Odoo 18 Inventory
How to Manage Manual Reordering Rule in Odoo 18 Inventory
Celine George
 
IPL QUIZ | THE QUIZ CLUB OF PSGCAS | 2025.pdf
IPL QUIZ | THE QUIZ CLUB OF PSGCAS | 2025.pdfIPL QUIZ | THE QUIZ CLUB OF PSGCAS | 2025.pdf
IPL QUIZ | THE QUIZ CLUB OF PSGCAS | 2025.pdf
Quiz Club of PSG College of Arts & Science
 
Botany Assignment Help Guide - Academic Excellence
Botany Assignment Help Guide - Academic ExcellenceBotany Assignment Help Guide - Academic Excellence
Botany Assignment Help Guide - Academic Excellence
online college homework help
 
antiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidenceantiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidence
PrachiSontakke5
 
IMPACT_OF_SOCIAL-MEDIA- AMONG- TEENAGERS
IMPACT_OF_SOCIAL-MEDIA- AMONG- TEENAGERSIMPACT_OF_SOCIAL-MEDIA- AMONG- TEENAGERS
IMPACT_OF_SOCIAL-MEDIA- AMONG- TEENAGERS
rajaselviazhagiri1
 
Classification of mental disorder in 5th semester bsc. nursing and also used ...
Classification of mental disorder in 5th semester bsc. nursing and also used ...Classification of mental disorder in 5th semester bsc. nursing and also used ...
Classification of mental disorder in 5th semester bsc. nursing and also used ...
parmarjuli1412
 
INSULIN.pptx by Arka Das (Bsc. Critical care technology)
INSULIN.pptx by Arka Das (Bsc. Critical care technology)INSULIN.pptx by Arka Das (Bsc. Critical care technology)
INSULIN.pptx by Arka Das (Bsc. Critical care technology)
ArkaDas54
 
How To Maximize Sales Performance using Odoo 18 Diverse views in sales module
How To Maximize Sales Performance using Odoo 18 Diverse views in sales moduleHow To Maximize Sales Performance using Odoo 18 Diverse views in sales module
How To Maximize Sales Performance using Odoo 18 Diverse views in sales module
Celine George
 
PUBH1000 Slides - Module 11: Governance for Health
PUBH1000 Slides - Module 11: Governance for HealthPUBH1000 Slides - Module 11: Governance for Health
PUBH1000 Slides - Module 11: Governance for Health
JonathanHallett4
 
MEDICAL BIOLOGY MCQS BY. DR NASIR MUSTAFA
MEDICAL BIOLOGY MCQS  BY. DR NASIR MUSTAFAMEDICAL BIOLOGY MCQS  BY. DR NASIR MUSTAFA
MEDICAL BIOLOGY MCQS BY. DR NASIR MUSTAFA
Dr. Nasir Mustafa
 
GENERAL QUIZ PRELIMS | QUIZ CLUB OF PSGCAS | 4 MARCH 2025 .pdf
GENERAL QUIZ PRELIMS | QUIZ CLUB OF PSGCAS | 4 MARCH 2025 .pdfGENERAL QUIZ PRELIMS | QUIZ CLUB OF PSGCAS | 4 MARCH 2025 .pdf
GENERAL QUIZ PRELIMS | QUIZ CLUB OF PSGCAS | 4 MARCH 2025 .pdf
Quiz Club of PSG College of Arts & Science
 
How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18
Celine George
 
How to Add Button in Chatter in Odoo 18 - Odoo Slides
How to Add Button in Chatter in Odoo 18 - Odoo SlidesHow to Add Button in Chatter in Odoo 18 - Odoo Slides
How to Add Button in Chatter in Odoo 18 - Odoo Slides
Celine George
 
MICROBIAL GENETICS -tranformation and tranduction.pdf
MICROBIAL GENETICS -tranformation and tranduction.pdfMICROBIAL GENETICS -tranformation and tranduction.pdf
MICROBIAL GENETICS -tranformation and tranduction.pdf
DHARMENDRA SAHU
 
Peer Assesment- Libby.docx..............
Peer Assesment- Libby.docx..............Peer Assesment- Libby.docx..............
Peer Assesment- Libby.docx..............
19lburrell
 
2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx
mansk2
 
MCQS (EMERGENCY NURSING) DR. NASIR MUSTAFA
MCQS (EMERGENCY NURSING) DR. NASIR MUSTAFAMCQS (EMERGENCY NURSING) DR. NASIR MUSTAFA
MCQS (EMERGENCY NURSING) DR. NASIR MUSTAFA
Dr. Nasir Mustafa
 
Final Evaluation.docx...........................
Final Evaluation.docx...........................Final Evaluation.docx...........................
Final Evaluation.docx...........................
l1bbyburrell
 
How to Use Upgrade Code Command in Odoo 18
How to Use Upgrade Code Command in Odoo 18How to Use Upgrade Code Command in Odoo 18
How to Use Upgrade Code Command in Odoo 18
Celine George
 
Unit 5 ACUTE, SUBACUTE,CHRONIC TOXICITY.pptx
Unit 5 ACUTE, SUBACUTE,CHRONIC TOXICITY.pptxUnit 5 ACUTE, SUBACUTE,CHRONIC TOXICITY.pptx
Unit 5 ACUTE, SUBACUTE,CHRONIC TOXICITY.pptx
Mayuri Chavan
 
How to Manage Manual Reordering Rule in Odoo 18 Inventory
How to Manage Manual Reordering Rule in Odoo 18 InventoryHow to Manage Manual Reordering Rule in Odoo 18 Inventory
How to Manage Manual Reordering Rule in Odoo 18 Inventory
Celine George
 
Botany Assignment Help Guide - Academic Excellence
Botany Assignment Help Guide - Academic ExcellenceBotany Assignment Help Guide - Academic Excellence
Botany Assignment Help Guide - Academic Excellence
online college homework help
 
antiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidenceantiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidence
PrachiSontakke5
 
IMPACT_OF_SOCIAL-MEDIA- AMONG- TEENAGERS
IMPACT_OF_SOCIAL-MEDIA- AMONG- TEENAGERSIMPACT_OF_SOCIAL-MEDIA- AMONG- TEENAGERS
IMPACT_OF_SOCIAL-MEDIA- AMONG- TEENAGERS
rajaselviazhagiri1
 
Classification of mental disorder in 5th semester bsc. nursing and also used ...
Classification of mental disorder in 5th semester bsc. nursing and also used ...Classification of mental disorder in 5th semester bsc. nursing and also used ...
Classification of mental disorder in 5th semester bsc. nursing and also used ...
parmarjuli1412
 
INSULIN.pptx by Arka Das (Bsc. Critical care technology)
INSULIN.pptx by Arka Das (Bsc. Critical care technology)INSULIN.pptx by Arka Das (Bsc. Critical care technology)
INSULIN.pptx by Arka Das (Bsc. Critical care technology)
ArkaDas54
 
How To Maximize Sales Performance using Odoo 18 Diverse views in sales module
How To Maximize Sales Performance using Odoo 18 Diverse views in sales moduleHow To Maximize Sales Performance using Odoo 18 Diverse views in sales module
How To Maximize Sales Performance using Odoo 18 Diverse views in sales module
Celine George
 
PUBH1000 Slides - Module 11: Governance for Health
PUBH1000 Slides - Module 11: Governance for HealthPUBH1000 Slides - Module 11: Governance for Health
PUBH1000 Slides - Module 11: Governance for Health
JonathanHallett4
 
MEDICAL BIOLOGY MCQS BY. DR NASIR MUSTAFA
MEDICAL BIOLOGY MCQS  BY. DR NASIR MUSTAFAMEDICAL BIOLOGY MCQS  BY. DR NASIR MUSTAFA
MEDICAL BIOLOGY MCQS BY. DR NASIR MUSTAFA
Dr. Nasir Mustafa
 
How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18
Celine George
 
How to Add Button in Chatter in Odoo 18 - Odoo Slides
How to Add Button in Chatter in Odoo 18 - Odoo SlidesHow to Add Button in Chatter in Odoo 18 - Odoo Slides
How to Add Button in Chatter in Odoo 18 - Odoo Slides
Celine George
 

Ray : modeling dynamic systems

  • 1. Modeling Dynamic Systems • Basic Quantities From Earthquake Records • Fourier Transform, Frequency Domain • Single Degree of Freedom Systems (SDOF) Elastic Response Spectra • Multi-Degree of Freedom Systems, (MDOF) Modal Analysis • Dynamic Analysis by Modal Methods • Method of Complex Response
  • 4. Acceleration vs. Time Acceleration vs. Time 4.0000E-01 3.0000E-01 2.0000E-01 Accel (g) 1.0000E-01 0.0000E+00 -1.0000E-01 -2.0000E-01 -3.0000E-01 -4.0000E-01 0.00 10.00 20.00 30.00 40.00 50.00 Time (sec) 60.00 70.00 80.00 90.00
  • 5. Acceleration vs. Time, t=16.00 tot=16 to 20 sec vs Time 20.00 seconds Acceleration 4.0000E-01 3.0000E-01 2.0000E-01 Accel (g) 1.0000E-01 0.0000E+00 -1.0000E-01 -2.0000E-01 -3.0000E-01 -4.0000E-01 16.00 16.50 17.00 17.50 18.00 Time (sec) 18.50 19.00 19.50 20.00
  • 6. Harmonic Motion t = time A = amplitude of wave ω = frequency (radians / sec) SDOF Response 1.00E-02 8.00E-03 6.00E-03 X=A sin(ωt-φ) Displ. (m) 4.00E-03 Amplitude 2.00E-03 0.00E+00 φ = phase lag (radians ) Mass = 10.132 kg Damping = 0.00 Spring = 1.0 N/m ωn=√k/m=0.314 r/s Drive Freq = 0.0 Drive Force = 0.0 N Initial Vel. = 0.0 m/s Initial Disp. = 0.01 m -2.00E-03 -4.00E-03 -6.00E-03 Period=1/Frequency -8.00E-03 -1.00E-02 0.000 5.000 10.000 15.000 20.000 time (sec) 25.000 30.000 35.000 40.000
  • 7. Fourier Transform 2π s ωS = N ∆t N /2  (t ) = Re ∑ X s e iωS t x s =0 1 N −1  e −iωS k∆t  , ∑ xk  N k =0  =  X S  N −1 −iω k∆t 2 k e S , x N∑  k =0 e − iωS k∆t N s = 0,1, 2,..., 2 N 2   N  for 1 ≤ s < 2   for s = 0, s = = cos(ωS k∆t ) − i sin(ωS k∆t )    Mag X S = ℜX + ℑX 2 S 2 S   ℑX S φ = tan   ℜX  S  −1    
  • 8. Fourier Transform; El Centro Fourier Transform of El Centro Accleration Record 0.008 0.007 0.006 Magnitude 0.005 0.004 0.003 0.002 0.001 0 0 20 40 60 Circular Frequency, v 80 100 120
  • 9. Earthquake Elastic Response Spectra P0 sin(ωt ) x xt m c k/2 m x k/2 c k/2 k/2 xg (a) m + cx + kx = P0 sin(ω t ) x   m + mg + cx + kx = 0 or x x ωn = k m (b) D = c / ccrit c crit = km m + cx + kx = − mg = Pearthquake (t ) x  x undamped systems; ωd = k (1 − D 2 ) damped systems m
  • 10. Duhamel's Integral t p(τ) dx (t ) = e −ξ (1) ( t −τ ) t 1 x(t ) = mω D  p (τ )dτ  sin ω D (t − τ )   mω D  p(τ ) e −ξω (t −τ ) sin ω D (t − τ ) dτ ∫ 0 x(t ) = A(t ) sin ω D t − B(t ) cos ω D t t t 1 eξωτ 1 eξωτ A(t ) = ∫ p(τ ) eξωt cos ωD τ dτ B(t ) = mωD ∫ p(t ) eξωt sin ωD τ dτ mωD 0 0 A ∆τ 1 A  A  A(t ) =  ∑ (t ) ∑ (t ) = ∑ (t − ∆τ ) + p(t − ∆τ ) cos ωD (t − ∆τ ) mωD ζ ζ 2  2  exp(−ξω∆τ ) + p(t ) cos ωD t
  • 11. Elastic Response Spectrum 7.00E-02 Displacement Response Spectrum El Centro, 1940 E-W 6.00E-02 Displacement (m) 5.00E-02 D=0.0 4.00E-02 D=0.02 D=0.05 3.00E-02 2.00E-02 1.00E-02 0.00E+00 1.00E-01 1.00E+00 1.00E+01 Frequency (rad/sec) 1.00E+02
  • 12. Multi-Degree of Freedom x3 m3 c3 k3 /2 x2 k1/2 k3/2 c2 k2/2 m1 c1 k1/2 y3 y2 m + cx + kx = p(t) x  y4 y1 y5 θ1 (a) k12  k1N   x1  k 22  k 2 N   x2              ki 2  kiN   xi  kij = force corresponding to coordinate i due to unit displacement of coordinate j cij = force corresponding to coordinate i due to unit velocity of coordinate j mij = force corresponding to coordinate i due to unit acceleration of coordinate j m2 k2/2 x1  f S 1   k11  f  k  S 2   21  =      f Si   ki1    θ2 θ3 (b) θ4 θ5
  • 13. Modal Analysis m + kx = p(t) x  mΦX + kΦX = p(t ) T T T  φ n mΦX + φ n kΦX = φ n p(t) T T T  φ n mφ n X n + φ n kφ n X n = φ n p(t)  M n X n + K n X n = Pn (t )
  • 14. Modal Damping   M n X n + C n X n + K n X n = Pn (t )  + 2ξ ω X + K X = Pn (t )  Xn n n n n n Mn T M n ≡ φ n mφ n T C n ≡ φ n cφ n T K n ≡ φ n kφ n c = a 0 m + a1k C nb = φ T c b φ n = ab φ T m[m −1 k ]b φ n n n T Pn (t ) ≡ φ n p(t )
  • 15. FEM Frequency Domain  [ M ]{ u} + [ K ]{ u} = { p} e iωt { u} = { U} e then {[ K ] − ω 2 [ M ]}{ U} = {p} i ωt
  • 16. Finite Elements u1 u7 G1,ρ1,ν1 u2 u8 [ K1 ] = fn(G1 , ρ1 ,ν 1 ) [ m1 ] = fn( ρ1 ) ui = ai x + bi y + c  k1,1 k  2,1   k  7 ,1 k8,1  k1, 2 k 2, 2 k1, 7 k 2, 7 k7, 2 k8, 2 k7,7 k8, 7 k1,8 u1  k 2,8 u2        k7 ,8 u7    k8,8 u8    ε = constant σ = constant
  • 17.  [ M ]{ u} + [ K ]{ u} = { p} eiωt m1  m2       m3 m4    u1   k1,1 k1, 2  u   k  k   2   2,1 2, 2    u3  +  k3,1 k3, 2      k 4, 2  u4   m5  u5        k1,3 k 2,3 k 2, 4 k 3, 3 k 3, 4 k 4,3 k 4, 4 k 5, 3 k 5, 4   u1   p1       u2   p2      k3,5  u3  =  p3 eiωt  k 4,5  u4   p4      k5,5  u5   p5       if { u} = { U} e iωt then { u} = −ω 2 { U} e iωt and {[ K ] − ω [ M ]}{ U} = {p} given ω, {p}, solve for { U} 2 [ K ], { U} are complex − valued ( G* = G 1 − 2 D 2 + 2iD 1 − D 2 )
  • 18. Method of Complex Response • Given earthquake acceleration vs. time, ü(t) • FFT => ω1, ω 2 , ω 3...ωn ; {p}1 ,{p}2 ,{p}3,{p}n N /2 • Recall that  (t ) = Re ∑ X s e iωS t x s =0 { [ K ] − ω [ M ] } { U} = {p} 2 • Solve • FFT-1 => ü (t)
  • 19. 212,428 nodes, 189,078 brick elements and 1500 shell elements Circular boundary to reduce reflections
  • 21. Finite Element Model of Three-Bent Bridge
  翻译: