Text mining is an emerging research field evolving from information retrieval area. Clustering and
classification are the two approaches in data mining which may also be used to perform text classification
and text clustering. The former is supervised while the later is un-supervised. In this paper, our objective is
to perform text clustering by defining an improved distance metric to compute the similarity between two
text files. We use incremental frequent pattern mining to find frequent items and reduce dimensionality.
The improved distance metric may also be used to perform text classification. The distance metric is
validated for the worst, average and best case situations [15]. The results show the proposed distance
metric outperforms the existing measures.