To mine out relevant facts at the time of need from web has been a tenuous task. Research on diverse fields
are fine tuning methodologies toward these goals that extracts the best of information relevant to the users
search query. In the proposed methodology discussed in this paper find ways to ease the search complexity
tackling the severe issues hindering the performance of traditional approaches in use. The proposed
methodology find effective means to find all possible semantic relatable frequent sets with FP Growth
algorithm. The outcome of which is the further source of fuel for Bio inspired Fuzzy PSO to find the optimal
attractive points for the web documents to get clustered meeting the requirement of the search query
without losing the relevance. On the whole the proposed system optimizes the objective function of
minimizing the intra cluster differences and maximizes the inter cluster distances along with retention of all
possible relationships with the search context intact. The major contribution being the system finds all
possible combinations matching the user search transaction and thereby making the system more
meaningful. These relatable sets form the set of particles for Fuzzy Clustering as well as PSO and thus
being unbiased and maintains a innate behaviour for any number of new additions to follow the herd
behaviour’s evaluations reveals the proposed methodology fares well as an optimized and effective
enhancements over the conventional approaches.