Tangram is a state-of-art resource allocator and distributed scheduling framework for Spark at Facebook with hierarchical queues and a resource based container abstraction. We support scheduling and resource management for a significant portion of Facebook's data warehouse and machine learning workloads that equates to running millions of jobs across several clusters with tens of thousands of machines. In this talk, we will describe Tangram's architecture, discuss Facebook's need for a custom scheduler, and explain how Tangram schedules Spark workloads at scale. We will specifically focus on several important features around improving Spark's efficiency, usability and reliability: 1. IO-rebalancer (Tetris) Support 2. User-Fairness Queueing 3. Heuristic-Based Backfill Scheduling Optimizations.