SlideShare a Scribd company logo
r-squared
Slide 1 www.r-squared.in/rprogramming
R Programming
Learn the fundamentals of data analysis with R.
r-squared
Slide 2
Course Modules
www.r-squared.in/rprogramming
✓ Introduction
✓ Elementary Programming
✓ Working With Data
✓ Selection Statements
✓ Loops
✓ Functions
✓ Debugging
✓ Unit Testing
r-squared
Slide 3
Working With Data
www.r-squared.in/rprogramming
✓ Data Types
✓ Data Structures
✓ Data Creation
✓ Data Info
✓ Data Subsetting
✓ Comparing R Objects
✓ Importing Data
✓ Exporting Data
✓ Data Transformation
✓ Numeric Functions
✓ String Functions
✓ Mathematical Functions
r-squared
In this unit, we will explore the following numeric functions:
Slide 4
Numeric Functions
www.r-squared.in/rprogramming
● signif()
● jitter()
● format()
● formatC()
● abs()
● round()
● ceiling()
● floor()
r-squared
Slide 5
abs()
www.r-squared.in/rprogramming
Description
abs() computes the absolute values of its arguments.
Syntax
abs(x)
Returns
Absolute value
Documentation
help(abs)
r-squared
Slide 6
abs()
www.r-squared.in/rprogramming
Examples
> # example 1
> x <- -5
> abs(x)
[1] 5
> # example 2
> y <- 5
> abs(y)
[1] 5
> # example 3
> z <- c(1, -3, 4, -7, 5, -9)
> abs(z)
[1] 1 3 4 7 5 9
r-squared
Slide 7
round()
www.r-squared.in/rprogramming
Description
round() rounds its argument to the specified number of decimal places.
Syntax
round(x, digits)
Returns
Argument rounded to specified number of decimal places.
Documentation
help(round)
r-squared
Slide 8
round()
www.r-squared.in/rprogramming
Examples
> # example 1
> x <- 5.3645
> round(x) # zero decimal values
[1] 5
> round(x, digits = 1) # one decimal values
[1] 5.4
> round(x, digits = 2) # two decimal values
[1] 5.36
> round(x, digits = 3) # three decimal values
[1] 5.364
r-squared
Slide 9
ceiling()
www.r-squared.in/rprogramming
Description
ceiling() takes a numeric argument x and returns the smallest integer not less than x.
Syntax
ceiling(x)
Returns
Integer
Documentation
help(ceiling)
r-squared
Slide 10
ceiling()
www.r-squared.in/rprogramming
Examples
> example 1
> x <- 5.3645
> ceiling(x)
[1] 6
> example 2
> x <- 3.94
> ceiling(x)
[1] 4
> example 3
> x
[1] 7.012865 8.148132 9.840098 2.965393 2.098276 6.139226 3.819461 8.849482 1.068249
[10] 5.105874
> ceiling(x)
[1] 8 9 10 3 3 7 4 9 2 6
r-squared
Slide 11
floor()
www.r-squared.in/rprogramming
Description
floor() takes a numeric argument x and returns the smallest integer not greater than x.
Syntax
floor(..., collapse = NULL)
Returns
Integer
Documentation
help(floor)
r-squared
Slide 12
floor()
www.r-squared.in/rprogramming
Examples
> # example 1
> x <- 5.3645
> floor(x)
[1] 5
> # example 2
> x <- 3.94
> floor(x)
[1] 3
> # example 3
> x <- sample(jitter(1:10))
> x
[1] 6.1581438 9.9260513 0.9823364 4.1083687 4.9102557 8.1316709 7.0094556 2.8870083
[9] 2.1403249 9.0941759
> floor(x)
[1] 6 9 0 4 4 8 7 2 2 9
r-squared
Slide 13
trunc()
www.r-squared.in/rprogramming
Description
trunc() takes a numeric argument and returns the first integer as the values is truncated
towards zero.
Syntax
trunc(x)
Returns
Integer
Documentation
help(trunc)
r-squared
Slide 14
trunc()
www.r-squared.in/rprogramming
Examples
> # example 1
> x <- 5.3645
> trunc(x)
[1] 5
# as we truncate the value in x towards zero, the first integer that appears is 5.
> # example 2
> x <- -3.94
> trunc(x)
[1] -3
> round(x)
[1] -4
> floor(x)
[1] -4
# as we truncate the value in x towards zero, the first integer that appears is -3.
r-squared
Slide 15
signif()
www.r-squared.in/rprogramming
Description
signif() rounds the value in the first argument to the specified number of significant
digits.
Syntax
signif(x, digits)
Returns
Value with specified number of significant digits
Documentation
help(signif)
r-squared
Slide 16
signif()
www.r-squared.in/rprogramming
Examples
> # example
> x <- 5.3645
> signif(x, 1)
[1] 5
> signif(x, 2)
[1] 5.4
> signif(x, 3)
[1] 5.36
r-squared
Slide 17
jitter()
www.r-squared.in/rprogramming
Description
jitter() add noise to a numeric vector.
Syntax
jitter(numeric_vector)
Returns
Numeric vector with noise
Documentation
help(jitter)
r-squared
Slide 18
jitter()
www.r-squared.in/rprogramming
Examples
> # example 1
> x <- 1:10
> x
[1] 1 2 3 4 5 6 7 8 9 10
> jitter(x)
[1] 1.198246 1.845626 3.171562 3.809923 5.188604 6.171728 7.022194 8.058092
[9] 9.150582 10.142704
r-squared
Slide 19
format()
www.r-squared.in/rprogramming
Description
format() will format an R object for pretty printing.
Syntax
format(x, digits, nsmall, justify)
Returns
Formatted object
Documentation
help(format)
r-squared
Slide 20
format()
www.r-squared.in/rprogramming
Examples
> # example 1
> x
[1] 1.187272 2.080868 3.197517 4.016246 4.979482 6.163807 6.837692 8.013903 8.864735
[10] 9.939144
> format(x, digits = 3)
[1] "1.19" "2.08" "3.20" "4.02" "4.98" "6.16" "6.84" "8.01" "8.86" "9.94"
> # example 2
> x <- 1:10
> format(x)
[1] " 1" " 2" " 3" " 4" " 5" " 6" " 7" " 8" " 9" "10"
> format(x, trim = TRUE)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
r-squared
Slide 21
format()
www.r-squared.in/rprogramming
Examples
> # example 3
> format(6.5)
[1] "6.5"
> format(6.5, nsmall = 3)
[1] "6.500"
> format(c(6.5, 15.3), digits = 2)
[1] " 6.5" "15.3"
> format(c(6.5, 15.3), digits = 2, nsmall = 1)
[1] " 6.5" "15.3"
r-squared
Slide 22
formatC()
www.r-squared.in/rprogramming
Description
formatC() formats numbers individually and flexibly.
Syntax
formatC(x, digits, width)
Returns
Formatted object
Documentation
help(formatC)
r-squared
Slide 23
formatC()
www.r-squared.in/rprogramming
Examples
> # example 1
> x <- 1:10
> formatC(x)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
> formatC(x, width = 6)
[1] " 1" " 2" " 3" " 4" " 5" " 6" " 7" " 8" " 9"
[10] " 10"
> # example 2
> x <- sample(jitter(1:10))
> x
[1] 7.0094486 0.9592379 5.8403164 8.8848952 4.9665959 9.9507841 3.1295332 7.8283830
[9] 2.1360850 3.8991551
> formatC(x, digits = 4)
[1] "7.009" "0.9592" " 5.84" "8.885" "4.967" "9.951" " 3.13" "7.828" "2.136"
[10] "3.899"
r-squared
In the next unit, we will explore string manipulation in R using the following functions:
Slide 24
Next Steps...
www.r-squared.in/rprogramming
● match()
● char.expand()
● grep()
● grepl()
● sub()
● substr()
● substring()
● strsplit()
● strtrim()
● chartr()
● tolower()
● toupper()
● toString()
● nchar()
● nzchar()
● noquote()
● pmatch()
● charmatch()
r-squared
Slide 25
Connect With Us
www.r-squared.in/rprogramming
Visit r-squared for tutorials
on:
● R Programming
● Business Analytics
● Data Visualization
● Web Applications
● Package Development
● Git & GitHub
Ad

More Related Content

What's hot (20)

Sparklyr
SparklyrSparklyr
Sparklyr
Dieudonne Nahigombeye
 
Data transformation-cheatsheet
Data transformation-cheatsheetData transformation-cheatsheet
Data transformation-cheatsheet
Dieudonne Nahigombeye
 
Stata cheat sheet: data processing
Stata cheat sheet: data processingStata cheat sheet: data processing
Stata cheat sheet: data processing
Tim Essam
 
Stata Programming Cheat Sheet
Stata Programming Cheat SheetStata Programming Cheat Sheet
Stata Programming Cheat Sheet
Laura Hughes
 
Data import-cheatsheet
Data import-cheatsheetData import-cheatsheet
Data import-cheatsheet
Dieudonne Nahigombeye
 
Stata cheatsheet transformation
Stata cheatsheet transformationStata cheatsheet transformation
Stata cheatsheet transformation
Laura Hughes
 
Stata cheat sheet: data transformation
Stata  cheat sheet: data transformationStata  cheat sheet: data transformation
Stata cheat sheet: data transformation
Tim Essam
 
Hive function-cheat-sheet
Hive function-cheat-sheetHive function-cheat-sheet
Hive function-cheat-sheet
Dr. Volkan OBAN
 
Dplyr and Plyr
Dplyr and PlyrDplyr and Plyr
Dplyr and Plyr
Paul Richards
 
Arrays in SAS
Arrays in SASArrays in SAS
Arrays in SAS
guest2160992
 
R factors
R   factorsR   factors
R factors
Learnbay Datascience
 
Introduction to data.table in R
Introduction to data.table in RIntroduction to data.table in R
Introduction to data.table in R
Paul Richards
 
Data Management in Python
Data Management in PythonData Management in Python
Data Management in Python
Sankhya_Analytics
 
Stack queue
Stack queueStack queue
Stack queue
Harry Potter
 
Stata cheat sheet analysis
Stata cheat sheet analysisStata cheat sheet analysis
Stata cheat sheet analysis
Tim Essam
 
Pandas Cheat Sheet
Pandas Cheat SheetPandas Cheat Sheet
Pandas Cheat Sheet
ACASH1011
 
5 R Tutorial Data Visualization
5 R Tutorial Data Visualization5 R Tutorial Data Visualization
5 R Tutorial Data Visualization
Sakthi Dasans
 
Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...
Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...
Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...
Lucas Jellema
 
Chapter 6 arrays part-1
Chapter 6   arrays part-1Chapter 6   arrays part-1
Chapter 6 arrays part-1
Synapseindiappsdevelopment
 
Morel, a Functional Query Language
Morel, a Functional Query LanguageMorel, a Functional Query Language
Morel, a Functional Query Language
Julian Hyde
 
Stata cheat sheet: data processing
Stata cheat sheet: data processingStata cheat sheet: data processing
Stata cheat sheet: data processing
Tim Essam
 
Stata Programming Cheat Sheet
Stata Programming Cheat SheetStata Programming Cheat Sheet
Stata Programming Cheat Sheet
Laura Hughes
 
Stata cheatsheet transformation
Stata cheatsheet transformationStata cheatsheet transformation
Stata cheatsheet transformation
Laura Hughes
 
Stata cheat sheet: data transformation
Stata  cheat sheet: data transformationStata  cheat sheet: data transformation
Stata cheat sheet: data transformation
Tim Essam
 
Hive function-cheat-sheet
Hive function-cheat-sheetHive function-cheat-sheet
Hive function-cheat-sheet
Dr. Volkan OBAN
 
Introduction to data.table in R
Introduction to data.table in RIntroduction to data.table in R
Introduction to data.table in R
Paul Richards
 
Stata cheat sheet analysis
Stata cheat sheet analysisStata cheat sheet analysis
Stata cheat sheet analysis
Tim Essam
 
Pandas Cheat Sheet
Pandas Cheat SheetPandas Cheat Sheet
Pandas Cheat Sheet
ACASH1011
 
5 R Tutorial Data Visualization
5 R Tutorial Data Visualization5 R Tutorial Data Visualization
5 R Tutorial Data Visualization
Sakthi Dasans
 
Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...
Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...
Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...
Lucas Jellema
 
Morel, a Functional Query Language
Morel, a Functional Query LanguageMorel, a Functional Query Language
Morel, a Functional Query Language
Julian Hyde
 

Viewers also liked (20)

R programming
R programmingR programming
R programming
Shantanu Patil
 
R Programming: Variables & Data Types
R Programming: Variables & Data TypesR Programming: Variables & Data Types
R Programming: Variables & Data Types
Rsquared Academy
 
CIV1900 Matlab - Plotting & Coursework
CIV1900 Matlab - Plotting & CourseworkCIV1900 Matlab - Plotting & Coursework
CIV1900 Matlab - Plotting & Coursework
TUOS-Sam
 
Variables in matlab
Variables in matlabVariables in matlab
Variables in matlab
TUOS-Sam
 
Matlab time series example
Matlab time series exampleMatlab time series example
Matlab time series example
Ovie Uddin Ovie Uddin
 
metode numerik stepest descent dengan rerata aritmatika
metode numerik stepest descent dengan rerata aritmatikametode numerik stepest descent dengan rerata aritmatika
metode numerik stepest descent dengan rerata aritmatika
Sabarinsyah Piliang
 
Introduction to Matlab Scripts
Introduction to Matlab ScriptsIntroduction to Matlab Scripts
Introduction to Matlab Scripts
Shameer Ahmed Koya
 
Loops in matlab
Loops in matlabLoops in matlab
Loops in matlab
TUOS-Sam
 
Modul1 metode bagi dua Praktikum Metode Numerik
Modul1 metode bagi dua Praktikum Metode NumerikModul1 metode bagi dua Praktikum Metode Numerik
Modul1 metode bagi dua Praktikum Metode Numerik
James Montolalu
 
Modul2 metode regula falsi praktikum metode numerik
Modul2 metode regula falsi praktikum metode numerikModul2 metode regula falsi praktikum metode numerik
Modul2 metode regula falsi praktikum metode numerik
James Montolalu
 
User defined Functions in MATLAB Part 1
User defined Functions in MATLAB Part 1User defined Functions in MATLAB Part 1
User defined Functions in MATLAB Part 1
Shameer Ahmed Koya
 
User Defined Functions in MATLAB Part-4
User Defined Functions in MATLAB Part-4User Defined Functions in MATLAB Part-4
User Defined Functions in MATLAB Part-4
Shameer Ahmed Koya
 
Metode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unilaMetode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unila
Ibad Ahmad
 
Band Combination of Landsat 8 Earth-observing Satellite Images
Band Combination of Landsat 8 Earth-observing Satellite ImagesBand Combination of Landsat 8 Earth-observing Satellite Images
Band Combination of Landsat 8 Earth-observing Satellite Images
Kabir Uddin
 
Matlab 1 level_1
Matlab 1 level_1Matlab 1 level_1
Matlab 1 level_1
Ahmed Farouk
 
MATLAB Programming - Loop Control Part 2
MATLAB Programming - Loop Control Part 2MATLAB Programming - Loop Control Part 2
MATLAB Programming - Loop Control Part 2
Shameer Ahmed Koya
 
mat lab introduction and basics to learn
mat lab introduction and basics to learnmat lab introduction and basics to learn
mat lab introduction and basics to learn
pavan373
 
Panduan matlab
Panduan matlabPanduan matlab
Panduan matlab
giya12001
 
Metode numerik persamaan non linier
Metode numerik persamaan non linierMetode numerik persamaan non linier
Metode numerik persamaan non linier
Izhan Nassuha
 
R Programming: Variables & Data Types
R Programming: Variables & Data TypesR Programming: Variables & Data Types
R Programming: Variables & Data Types
Rsquared Academy
 
CIV1900 Matlab - Plotting & Coursework
CIV1900 Matlab - Plotting & CourseworkCIV1900 Matlab - Plotting & Coursework
CIV1900 Matlab - Plotting & Coursework
TUOS-Sam
 
Variables in matlab
Variables in matlabVariables in matlab
Variables in matlab
TUOS-Sam
 
metode numerik stepest descent dengan rerata aritmatika
metode numerik stepest descent dengan rerata aritmatikametode numerik stepest descent dengan rerata aritmatika
metode numerik stepest descent dengan rerata aritmatika
Sabarinsyah Piliang
 
Introduction to Matlab Scripts
Introduction to Matlab ScriptsIntroduction to Matlab Scripts
Introduction to Matlab Scripts
Shameer Ahmed Koya
 
Loops in matlab
Loops in matlabLoops in matlab
Loops in matlab
TUOS-Sam
 
Modul1 metode bagi dua Praktikum Metode Numerik
Modul1 metode bagi dua Praktikum Metode NumerikModul1 metode bagi dua Praktikum Metode Numerik
Modul1 metode bagi dua Praktikum Metode Numerik
James Montolalu
 
Modul2 metode regula falsi praktikum metode numerik
Modul2 metode regula falsi praktikum metode numerikModul2 metode regula falsi praktikum metode numerik
Modul2 metode regula falsi praktikum metode numerik
James Montolalu
 
User defined Functions in MATLAB Part 1
User defined Functions in MATLAB Part 1User defined Functions in MATLAB Part 1
User defined Functions in MATLAB Part 1
Shameer Ahmed Koya
 
User Defined Functions in MATLAB Part-4
User Defined Functions in MATLAB Part-4User Defined Functions in MATLAB Part-4
User Defined Functions in MATLAB Part-4
Shameer Ahmed Koya
 
Metode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unilaMetode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unila
Ibad Ahmad
 
Band Combination of Landsat 8 Earth-observing Satellite Images
Band Combination of Landsat 8 Earth-observing Satellite ImagesBand Combination of Landsat 8 Earth-observing Satellite Images
Band Combination of Landsat 8 Earth-observing Satellite Images
Kabir Uddin
 
MATLAB Programming - Loop Control Part 2
MATLAB Programming - Loop Control Part 2MATLAB Programming - Loop Control Part 2
MATLAB Programming - Loop Control Part 2
Shameer Ahmed Koya
 
mat lab introduction and basics to learn
mat lab introduction and basics to learnmat lab introduction and basics to learn
mat lab introduction and basics to learn
pavan373
 
Panduan matlab
Panduan matlabPanduan matlab
Panduan matlab
giya12001
 
Metode numerik persamaan non linier
Metode numerik persamaan non linierMetode numerik persamaan non linier
Metode numerik persamaan non linier
Izhan Nassuha
 
Ad

Similar to R Programming: Numeric Functions In R (20)

R Programming: Mathematical Functions In R
R Programming: Mathematical Functions In RR Programming: Mathematical Functions In R
R Programming: Mathematical Functions In R
Rsquared Academy
 
R programming language
R programming languageR programming language
R programming language
Alberto Minetti
 
R Language Introduction
R Language IntroductionR Language Introduction
R Language Introduction
Khaled Al-Shamaa
 
Seminar PSU 10.10.2014 mme
Seminar PSU 10.10.2014 mmeSeminar PSU 10.10.2014 mme
Seminar PSU 10.10.2014 mme
Vyacheslav Arbuzov
 
R and data mining
R and data miningR and data mining
R and data mining
Chaozhong Yang
 
Learn Matlab
Learn MatlabLearn Matlab
Learn Matlab
Abd El Kareem Ahmed
 
R tutorial for a windows environment
R tutorial for a windows environmentR tutorial for a windows environment
R tutorial for a windows environment
Yogendra Chaubey
 
ComputeFest 2012: Intro To R for Physical Sciences
ComputeFest 2012: Intro To R for Physical SciencesComputeFest 2012: Intro To R for Physical Sciences
ComputeFest 2012: Intro To R for Physical Sciences
alexstorer
 
Grouping & Summarizing Data in R
Grouping & Summarizing Data in RGrouping & Summarizing Data in R
Grouping & Summarizing Data in R
Jeffrey Breen
 
India software developers conference 2013 Bangalore
India software developers conference 2013 BangaloreIndia software developers conference 2013 Bangalore
India software developers conference 2013 Bangalore
Satnam Singh
 
R programming & Machine Learning
R programming & Machine LearningR programming & Machine Learning
R programming & Machine Learning
AmanBhalla14
 
R Programming Intro
R Programming IntroR Programming Intro
R Programming Intro
062MayankSinghal
 
Regression and Classification with R
Regression and Classification with RRegression and Classification with R
Regression and Classification with R
Yanchang Zhao
 
R Programming Homework Help
R Programming Homework HelpR Programming Homework Help
R Programming Homework Help
Statistics Homework Helper
 
R Programming: Comparing Objects In R
R Programming: Comparing Objects In RR Programming: Comparing Objects In R
R Programming: Comparing Objects In R
Rsquared Academy
 
Idea for ineractive programming language
Idea for ineractive programming languageIdea for ineractive programming language
Idea for ineractive programming language
Lincoln Hannah
 
NCCU: Statistics in the Criminal Justice System, R basics and Simulation - Pr...
NCCU: Statistics in the Criminal Justice System, R basics and Simulation - Pr...NCCU: Statistics in the Criminal Justice System, R basics and Simulation - Pr...
NCCU: Statistics in the Criminal Justice System, R basics and Simulation - Pr...
The Statistical and Applied Mathematical Sciences Institute
 
RBootcam Day 2
RBootcam Day 2RBootcam Day 2
RBootcam Day 2
Olga Scrivner
 
Data manipulation with dplyr
Data manipulation with dplyrData manipulation with dplyr
Data manipulation with dplyr
Romain Francois
 
Linear models
Linear modelsLinear models
Linear models
FAO
 
R Programming: Mathematical Functions In R
R Programming: Mathematical Functions In RR Programming: Mathematical Functions In R
R Programming: Mathematical Functions In R
Rsquared Academy
 
R tutorial for a windows environment
R tutorial for a windows environmentR tutorial for a windows environment
R tutorial for a windows environment
Yogendra Chaubey
 
ComputeFest 2012: Intro To R for Physical Sciences
ComputeFest 2012: Intro To R for Physical SciencesComputeFest 2012: Intro To R for Physical Sciences
ComputeFest 2012: Intro To R for Physical Sciences
alexstorer
 
Grouping & Summarizing Data in R
Grouping & Summarizing Data in RGrouping & Summarizing Data in R
Grouping & Summarizing Data in R
Jeffrey Breen
 
India software developers conference 2013 Bangalore
India software developers conference 2013 BangaloreIndia software developers conference 2013 Bangalore
India software developers conference 2013 Bangalore
Satnam Singh
 
R programming & Machine Learning
R programming & Machine LearningR programming & Machine Learning
R programming & Machine Learning
AmanBhalla14
 
Regression and Classification with R
Regression and Classification with RRegression and Classification with R
Regression and Classification with R
Yanchang Zhao
 
R Programming: Comparing Objects In R
R Programming: Comparing Objects In RR Programming: Comparing Objects In R
R Programming: Comparing Objects In R
Rsquared Academy
 
Idea for ineractive programming language
Idea for ineractive programming languageIdea for ineractive programming language
Idea for ineractive programming language
Lincoln Hannah
 
Data manipulation with dplyr
Data manipulation with dplyrData manipulation with dplyr
Data manipulation with dplyr
Romain Francois
 
Linear models
Linear modelsLinear models
Linear models
FAO
 
Ad

More from Rsquared Academy (20)

Handling Date & Time in R
Handling Date & Time in RHandling Date & Time in R
Handling Date & Time in R
Rsquared Academy
 
Market Basket Analysis in R
Market Basket Analysis in RMarket Basket Analysis in R
Market Basket Analysis in R
Rsquared Academy
 
Practical Introduction to Web scraping using R
Practical Introduction to Web scraping using RPractical Introduction to Web scraping using R
Practical Introduction to Web scraping using R
Rsquared Academy
 
Joining Data with dplyr
Joining Data with dplyrJoining Data with dplyr
Joining Data with dplyr
Rsquared Academy
 
Explore Data using dplyr
Explore Data using dplyrExplore Data using dplyr
Explore Data using dplyr
Rsquared Academy
 
Data Wrangling with dplyr
Data Wrangling with dplyrData Wrangling with dplyr
Data Wrangling with dplyr
Rsquared Academy
 
Writing Readable Code with Pipes
Writing Readable Code with PipesWriting Readable Code with Pipes
Writing Readable Code with Pipes
Rsquared Academy
 
Introduction to tibbles
Introduction to tibblesIntroduction to tibbles
Introduction to tibbles
Rsquared Academy
 
Read data from Excel spreadsheets into R
Read data from Excel spreadsheets into RRead data from Excel spreadsheets into R
Read data from Excel spreadsheets into R
Rsquared Academy
 
Read/Import data from flat/delimited files into R
Read/Import data from flat/delimited files into RRead/Import data from flat/delimited files into R
Read/Import data from flat/delimited files into R
Rsquared Academy
 
Variables & Data Types in R
Variables & Data Types in RVariables & Data Types in R
Variables & Data Types in R
Rsquared Academy
 
How to install & update R packages?
How to install & update R packages?How to install & update R packages?
How to install & update R packages?
Rsquared Academy
 
How to get help in R?
How to get help in R?How to get help in R?
How to get help in R?
Rsquared Academy
 
Introduction to R
Introduction to RIntroduction to R
Introduction to R
Rsquared Academy
 
R Markdown Tutorial For Beginners
R Markdown Tutorial For BeginnersR Markdown Tutorial For Beginners
R Markdown Tutorial For Beginners
Rsquared Academy
 
R Data Visualization Tutorial: Bar Plots
R Data Visualization Tutorial: Bar PlotsR Data Visualization Tutorial: Bar Plots
R Data Visualization Tutorial: Bar Plots
Rsquared Academy
 
R Programming: Introduction to Matrices
R Programming: Introduction to MatricesR Programming: Introduction to Matrices
R Programming: Introduction to Matrices
Rsquared Academy
 
R Programming: Introduction to Vectors
R Programming: Introduction to VectorsR Programming: Introduction to Vectors
R Programming: Introduction to Vectors
Rsquared Academy
 
Data Visualization With R: Learn To Combine Multiple Graphs
Data Visualization With R: Learn To Combine Multiple GraphsData Visualization With R: Learn To Combine Multiple Graphs
Data Visualization With R: Learn To Combine Multiple Graphs
Rsquared Academy
 
R Data Visualization: Learn To Add Text Annotations To Plots
R Data Visualization: Learn To Add Text Annotations To PlotsR Data Visualization: Learn To Add Text Annotations To Plots
R Data Visualization: Learn To Add Text Annotations To Plots
Rsquared Academy
 
Market Basket Analysis in R
Market Basket Analysis in RMarket Basket Analysis in R
Market Basket Analysis in R
Rsquared Academy
 
Practical Introduction to Web scraping using R
Practical Introduction to Web scraping using RPractical Introduction to Web scraping using R
Practical Introduction to Web scraping using R
Rsquared Academy
 
Writing Readable Code with Pipes
Writing Readable Code with PipesWriting Readable Code with Pipes
Writing Readable Code with Pipes
Rsquared Academy
 
Read data from Excel spreadsheets into R
Read data from Excel spreadsheets into RRead data from Excel spreadsheets into R
Read data from Excel spreadsheets into R
Rsquared Academy
 
Read/Import data from flat/delimited files into R
Read/Import data from flat/delimited files into RRead/Import data from flat/delimited files into R
Read/Import data from flat/delimited files into R
Rsquared Academy
 
Variables & Data Types in R
Variables & Data Types in RVariables & Data Types in R
Variables & Data Types in R
Rsquared Academy
 
How to install & update R packages?
How to install & update R packages?How to install & update R packages?
How to install & update R packages?
Rsquared Academy
 
R Markdown Tutorial For Beginners
R Markdown Tutorial For BeginnersR Markdown Tutorial For Beginners
R Markdown Tutorial For Beginners
Rsquared Academy
 
R Data Visualization Tutorial: Bar Plots
R Data Visualization Tutorial: Bar PlotsR Data Visualization Tutorial: Bar Plots
R Data Visualization Tutorial: Bar Plots
Rsquared Academy
 
R Programming: Introduction to Matrices
R Programming: Introduction to MatricesR Programming: Introduction to Matrices
R Programming: Introduction to Matrices
Rsquared Academy
 
R Programming: Introduction to Vectors
R Programming: Introduction to VectorsR Programming: Introduction to Vectors
R Programming: Introduction to Vectors
Rsquared Academy
 
Data Visualization With R: Learn To Combine Multiple Graphs
Data Visualization With R: Learn To Combine Multiple GraphsData Visualization With R: Learn To Combine Multiple Graphs
Data Visualization With R: Learn To Combine Multiple Graphs
Rsquared Academy
 
R Data Visualization: Learn To Add Text Annotations To Plots
R Data Visualization: Learn To Add Text Annotations To PlotsR Data Visualization: Learn To Add Text Annotations To Plots
R Data Visualization: Learn To Add Text Annotations To Plots
Rsquared Academy
 

Recently uploaded (20)

CS-404 COA COURSE FILE JAN JUN 2025.docx
CS-404 COA COURSE FILE JAN JUN 2025.docxCS-404 COA COURSE FILE JAN JUN 2025.docx
CS-404 COA COURSE FILE JAN JUN 2025.docx
nidarizvitit
 
Lagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdfLagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdf
benuju2016
 
Database administration and management chapter 12
Database administration and management chapter 12Database administration and management chapter 12
Database administration and management chapter 12
saniaafzalf1f2f3
 
How to Set Up Process Mining in a Decentralized Organization?
How to Set Up Process Mining in a Decentralized Organization?How to Set Up Process Mining in a Decentralized Organization?
How to Set Up Process Mining in a Decentralized Organization?
Process mining Evangelist
 
Understanding Complex Development Processes
Understanding Complex Development ProcessesUnderstanding Complex Development Processes
Understanding Complex Development Processes
Process mining Evangelist
 
Multi-tenant Data Pipeline Orchestration
Multi-tenant Data Pipeline OrchestrationMulti-tenant Data Pipeline Orchestration
Multi-tenant Data Pipeline Orchestration
Romi Kuntsman
 
hersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distributionhersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distribution
hershtara1
 
What is ETL? Difference between ETL and ELT?.pdf
What is ETL? Difference between ETL and ELT?.pdfWhat is ETL? Difference between ETL and ELT?.pdf
What is ETL? Difference between ETL and ELT?.pdf
SaikatBasu37
 
TOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdf
TOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdfTOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdf
TOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdf
NhiV747372
 
AWS-Certified-ML-Engineer-Associate-Slides.pdf
AWS-Certified-ML-Engineer-Associate-Slides.pdfAWS-Certified-ML-Engineer-Associate-Slides.pdf
AWS-Certified-ML-Engineer-Associate-Slides.pdf
philsparkshome
 
Mixed Methods Research.pptx education 201
Mixed Methods Research.pptx education 201Mixed Methods Research.pptx education 201
Mixed Methods Research.pptx education 201
GraceSolaa1
 
Urban models for professional practice 03
Urban models for professional practice 03Urban models for professional practice 03
Urban models for professional practice 03
DanisseLoiDapdap
 
Introduction to systems thinking tools_Eng.pdf
Introduction to systems thinking tools_Eng.pdfIntroduction to systems thinking tools_Eng.pdf
Introduction to systems thinking tools_Eng.pdf
AbdurahmanAbd
 
Introduction to Artificial Intelligence_ Lec 2
Introduction to Artificial Intelligence_ Lec 2Introduction to Artificial Intelligence_ Lec 2
Introduction to Artificial Intelligence_ Lec 2
Dalal2Ali
 
Dr. Robert Krug - Expert In Artificial Intelligence
Dr. Robert Krug - Expert In Artificial IntelligenceDr. Robert Krug - Expert In Artificial Intelligence
Dr. Robert Krug - Expert In Artificial Intelligence
Dr. Robert Krug
 
Automated Melanoma Detection via Image Processing.pptx
Automated Melanoma Detection via Image Processing.pptxAutomated Melanoma Detection via Image Processing.pptx
Automated Melanoma Detection via Image Processing.pptx
handrymaharjan23
 
national income & related aggregates (1)(1).pptx
national income & related aggregates (1)(1).pptxnational income & related aggregates (1)(1).pptx
national income & related aggregates (1)(1).pptx
j2492618
 
Lesson 6-Interviewing in SHRM_updated.pdf
Lesson 6-Interviewing in SHRM_updated.pdfLesson 6-Interviewing in SHRM_updated.pdf
Lesson 6-Interviewing in SHRM_updated.pdf
hemelali11
 
Storage Devices and the Mechanism of Data Storage in Audio and Visual Form
Storage Devices and the Mechanism of Data Storage in Audio and Visual FormStorage Devices and the Mechanism of Data Storage in Audio and Visual Form
Storage Devices and the Mechanism of Data Storage in Audio and Visual Form
Professional Content Writing's
 
2024 Digital Equity Accelerator Report.pdf
2024 Digital Equity Accelerator Report.pdf2024 Digital Equity Accelerator Report.pdf
2024 Digital Equity Accelerator Report.pdf
dominikamizerska1
 
CS-404 COA COURSE FILE JAN JUN 2025.docx
CS-404 COA COURSE FILE JAN JUN 2025.docxCS-404 COA COURSE FILE JAN JUN 2025.docx
CS-404 COA COURSE FILE JAN JUN 2025.docx
nidarizvitit
 
Lagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdfLagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdf
benuju2016
 
Database administration and management chapter 12
Database administration and management chapter 12Database administration and management chapter 12
Database administration and management chapter 12
saniaafzalf1f2f3
 
How to Set Up Process Mining in a Decentralized Organization?
How to Set Up Process Mining in a Decentralized Organization?How to Set Up Process Mining in a Decentralized Organization?
How to Set Up Process Mining in a Decentralized Organization?
Process mining Evangelist
 
Multi-tenant Data Pipeline Orchestration
Multi-tenant Data Pipeline OrchestrationMulti-tenant Data Pipeline Orchestration
Multi-tenant Data Pipeline Orchestration
Romi Kuntsman
 
hersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distributionhersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distribution
hershtara1
 
What is ETL? Difference between ETL and ELT?.pdf
What is ETL? Difference between ETL and ELT?.pdfWhat is ETL? Difference between ETL and ELT?.pdf
What is ETL? Difference between ETL and ELT?.pdf
SaikatBasu37
 
TOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdf
TOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdfTOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdf
TOAE201-Slides-Chapter 4. Sample theoretical basis (1).pdf
NhiV747372
 
AWS-Certified-ML-Engineer-Associate-Slides.pdf
AWS-Certified-ML-Engineer-Associate-Slides.pdfAWS-Certified-ML-Engineer-Associate-Slides.pdf
AWS-Certified-ML-Engineer-Associate-Slides.pdf
philsparkshome
 
Mixed Methods Research.pptx education 201
Mixed Methods Research.pptx education 201Mixed Methods Research.pptx education 201
Mixed Methods Research.pptx education 201
GraceSolaa1
 
Urban models for professional practice 03
Urban models for professional practice 03Urban models for professional practice 03
Urban models for professional practice 03
DanisseLoiDapdap
 
Introduction to systems thinking tools_Eng.pdf
Introduction to systems thinking tools_Eng.pdfIntroduction to systems thinking tools_Eng.pdf
Introduction to systems thinking tools_Eng.pdf
AbdurahmanAbd
 
Introduction to Artificial Intelligence_ Lec 2
Introduction to Artificial Intelligence_ Lec 2Introduction to Artificial Intelligence_ Lec 2
Introduction to Artificial Intelligence_ Lec 2
Dalal2Ali
 
Dr. Robert Krug - Expert In Artificial Intelligence
Dr. Robert Krug - Expert In Artificial IntelligenceDr. Robert Krug - Expert In Artificial Intelligence
Dr. Robert Krug - Expert In Artificial Intelligence
Dr. Robert Krug
 
Automated Melanoma Detection via Image Processing.pptx
Automated Melanoma Detection via Image Processing.pptxAutomated Melanoma Detection via Image Processing.pptx
Automated Melanoma Detection via Image Processing.pptx
handrymaharjan23
 
national income & related aggregates (1)(1).pptx
national income & related aggregates (1)(1).pptxnational income & related aggregates (1)(1).pptx
national income & related aggregates (1)(1).pptx
j2492618
 
Lesson 6-Interviewing in SHRM_updated.pdf
Lesson 6-Interviewing in SHRM_updated.pdfLesson 6-Interviewing in SHRM_updated.pdf
Lesson 6-Interviewing in SHRM_updated.pdf
hemelali11
 
Storage Devices and the Mechanism of Data Storage in Audio and Visual Form
Storage Devices and the Mechanism of Data Storage in Audio and Visual FormStorage Devices and the Mechanism of Data Storage in Audio and Visual Form
Storage Devices and the Mechanism of Data Storage in Audio and Visual Form
Professional Content Writing's
 
2024 Digital Equity Accelerator Report.pdf
2024 Digital Equity Accelerator Report.pdf2024 Digital Equity Accelerator Report.pdf
2024 Digital Equity Accelerator Report.pdf
dominikamizerska1
 

R Programming: Numeric Functions In R

  翻译: