This paper analyzes the performance of texture feature extraction techniques like curvelet transform, contourlet transform, and local ternary pattern (LTP) for magnetic resonance image (MRI) brain tumor retrieval using deep neural network (DNN) classification. Texture features are extracted from 1000 brain tumor MRI images using the three techniques. The features are classified using DNN and the techniques are evaluated based on performance metrics like sensitivity, specificity, accuracy, error rate, and F-measure. Experimental results show that contourlet transform provides better retrieval performance than curvelet transform and LTP according to these evaluation metrics.