SlideShare a Scribd company logo
International Centre for Integrated Mountain Development
Kathmandu, Nepal
Object-Based Image
Analysis (GEOBIA)
Kabir Uddin
GIS and remote sensing analyst
Email: Kabir.Uddin@icimod.org kabir.Uddin.bd@gmail.com
- The last few decades have
seen high levels of
deforestation and forest
degradation in the region.
- The changes in forest cover
due to growth dynamics,
management, harvest and
natural disturbances may
change the role and function of
forest ecosystems.
- Land use conversions from
forest to other land uses often
result in substantial loss of
carbon from the biomass pool.
What happening in the region
Development of baseline information
The use of satellites to monitor processes and trends at the global scale is
essential in the context of climate change
Land cover and land use change
detection using remote sensing and
geospatial data provides baseline
information for assessing the climate
change impacts on habitats and
biodiversity, as well as natural
resources, in the target areas.
Image Classification
• The process of sorting pixels into a number of data
categories based on their data file values
• The process of reducing images to information classes
Image Classification
Image classification techniques
There are different types of classification
procedures:
● Unsupervised
● Supervised
● Knowledge base
● Object base
● Others
Unsupervised classification
– The process of automatically segmenting an image
into spectral classes based on natural groupings found
in the data
– The process of identifying land cover classes and
naming them
Label
Bare
Agriculture
Forest
Grass
Water
ISODATA
Class 1
Class 2
Class 3
Class 4
Class 5
Class Names
Supervised classification
– the process of using samples of known identity (i.e., pixels
already assigned to information classes) to classify pixels of
unknown identity (i.e., all the other pixels in the image)
Object based image analysis
Before knowing more details about object
based image analysis lets use relatively
simple example
Object based image analysis
Part of the application
of GEOBIA lets extract
water from the high
resolution image.
When visually
inspecting data sets
looks all the blue pixel
should be water.
√
√
√
.
. .
.
.
.
.
. .
. . . .
.
.
.
.....
.
.
.
.
Object based image analysis
Part of the application
of GEOBIA lets extract
water from the high
resolution image.
When visually
inspecting data sets
looks all the blue pixel
should be water.
√
√
√
.
. .
.
.
.
.
. .
. . . .
.
.
.
.....
.
.
.
.
√
√
Object based image analysis
Part of the application
of GEOBIA lets extract
water from the high
resolution image.
When visually
inspecting data sets
looks all the blue pixel
should be water.
.
. .
.
.
.
.
. .
. . . .
.
.
.
.....
.
.
.
.
Object based image analysis
Object based image analysis
– Color Statistics
– Shape
– Texture
– Hierarchy
– Relations to...
...neighbor objects
...super-objects
...sub-objects
Object based image analysis
– Color Statistics
– Shape
– Texture
– Hierarchy
– Relations to...
...neighbor objects
...super-objects
...sub-objects
Object based image analysis
• Object-Based Image Analysis also called Geographic
Object-Based Image Analysis (GEOBIA) and it is a sub-
discipline of geoinformation science. Object – based
image analysis a technique used to analyze digital
imagery. OBIA developed relatively recently compared
to traditional pixel-based image analysis.
• Pixel-based image analysis is based on the information
in each pixel, object based image analysis is based on
information from a set of similar pixels called objects or
image objects.
Software for Object Based
Classification
eCognition/ Definiens
IDRISI
ERDAS Imagine
ENVI
MADCAT
IMAGINE Objective
Automated Feature Extraction
Reduce the labor, time and cost associated with intensive
manual digitization.
Repeatability
Reliably maintain geospatial content by re-using your
feature models.
Emulates Human Vision
True object processing taps into the human visual system
of image interpretation.
IMAGINE Objective
IMAGINE Objective
Image segmentation in IMAGINE Objective
IMAGINE Objective
Classified building in IMAGINE Objective
Segmentation and Segment-Based
Classification using IDRISI
Feature Extraction using ENVI
Object based image analysis using
MadCat
MadCat (MApping Device - Change Analysis Tool) is
software mainly devoted to optimizing the production of
vector polygon based maps.
It is part of the GEOvis set of tools developed by FAO
The software also includes a module for change assessment
and analysis
MadCat version 3.1.0 Release (12.02.2009).
MadCat is FREE
Object based image analysis using
MadCat
eCognition/Definiens
• eCognition/Definiens software employs a flexible
approach to image analysis, solution creation and
adaption
• Definiens Cognition Network Technology® has been
developed by Nobel Laureate, Prof. Dr. Gerd Binnig
and his team
• In 2000, Definiens (eCognition) came in market
• In 2003 Definiens Developer along with Definiens
eCognition™ Server was introduced. Now,
Definiens Developer 8 with updated versions is
available
eCognition Developer
… is the development environment
for object-based image analysis.
eCognition Software Suite
eCognition Architect
… provides an easy-to-use front end
for non-technical professionals
allowing them to leverage eCognition
technology.
eCognition Server
… provides a processing
environment for the batch execution
of image analysis jobs.
eCognition Developer
• Develop rule sets
• Develop applications
• Combine, modify and
calibrate rule sets
• Process data
• Execute and monitor
analysis
• Review and edit results
Product Components:
 eCognition Developer client
 Quick Map Mode
 User Guide & Reference Book
 Guided Tours
 Software Development Kit (SDK)
eCognition Architect
• Combine, modify and
calibrate Applications
• Process data
• Execute and monitor
analysis
• Review and edit results
Product Components
 eCognition Architect client
 Quick Map Mode
 User Guide & Reference Book
 Software Development Kit (SDK)
eCognition Server
• Batch process data
• Dynamic load balancing
• Service oriented
architecture
• Highly scalable
Product components:
 eCognition Server
 HTML User Interface: Administrator
Console
 User Guide & Reference Book
 Software Development Kit (SDK)
Steps of land cover mapping
Legend development and classification
scheme
Data acquisition
Image rectification and enhancement
Field training information
Image segmentation
Generate image index
Assign rules
Draft land cover map
Validation and refining of land cover
Change assessment
Land cover map
Segmentation
• The first step of an eCognition image analysis is to cut the
image into pieces, which serve as building blocks for further
analysis – this step is called segmentation and there is a
choice of several algorithms to do this.
• The next step is to label these objects according to their
attributes, such as shape, color and relative position to other
objects.
Types of Segmentation
Types of Segmentation
Chessboard segmentation
Chessboard segmentation is the
simplest segmentation available as it
just splits the image into square objects
with a size predefined by the user.
Types of Segmentation
Quadtree based segmentation
Quadtree-based segmentation is similar to
chessboard segmentation, but creates
squares of differing sizes.
Quadtree-based segmentation, very
homogeneous regions typically produce
larger squares than heterogeneous
regions. Compared to multiresolution
segmentation,quadtree-based
segmentation is less heavy on resources.
Types of Segmentation
Contrast split segmentation
Contrast split segmentation is similar to
the multi-threshold segmentation
approach.
The contrast split segments the scene
into dark and bright image objects
based on a threshold value that
maximizes the contrast between them.
Types of Segmentation
Contrast split segmentation
Contrast split segmentation is similar to the
multi-threshold segmentation approach.
The contrast split segments the scene into
dark and bright image objects based on a
threshold value that maximizes the
contrast between them.
Types of Segmentation
Spectral difference segmentation
Spectral difference segmentation lets you
merge neighboring image objects if the
difference between their layer mean
intensities is below the value given by the
maximum spectral difference. It is
designed to refine existing segmentation
results, by merging spectrally similar image
objects produced by previous
segmentations and therefore is a bottom-
up segmentation.
Types of Segmentation
Multiresolution segmentation
Multiresolution Segmentation groups areas
of similar pixel values into objects.
Consequently homogeneous areas result
in larger objects, heterogeneous areas in
smaller ones.
The Multiresolution Segmentation
algorithm1 consecutively merges pixels or
existing image objects. Essentially, the
procedure identifies single image objects of
one pixel in size and merges them with
their neighbors, based on relative
homogeneity criteria.
Multiresolution
Segmentation, Parameters
Scale
• The value of the scale parameter
affects image segmentation by
determining the size of image
objects;
• Defines the minimum size of the
object through threshold value;
• The larger the scale parameter,
the more objects can be fused and
the larger the objects grow;
Image analysis assumptions
• Similar features will have similar spectral
responses.
• The spectral response of a feature is unique
with respect to all other features of interest.
• If we quantify the spectral response of a
known feature, we can use this information to
find all occurrences of that feature.
Object features in eCognition
Generating arithmetic
Feature
 The Normalized Difference Vegetation Index (NDVI) is a standardized
index allowing to generate an image displaying greenness (relative
biomass)
 Index values can range from -1.0 to 1.0, but vegetation values typically
range between 0.1 and 0.7.
 NDVI is related to vegetation is that
healthy vegetation reflects very well in
the near infrared part of the spectrum.
 It can be seen from its
mathematical definition that the NDVI
of an area containing a dense
vegetation canopy will tend to positive
values (say 0.3 to 0.8) while clouds
and snow fields will be characterized
by negative values of this index.
NDVI = (NIR - red) / (NIR + red)
Land and Water Masks (LWM)
Index values can range from 0 to 255, but water
values typically range between 0 to 50
Water Mask = infra-red) / (green + .0001) * 100
(ETM+) Water Mask = Band 5) / (Band 2 + .0001) *
100
Comparing features using the
2D feature space plot
Comparing features using the
2D feature space plot
Comparing features using the
2D feature space plot
Comparing features using the
2D feature space plot
Object Based Image Analysis
Investigation of classified land
cover
Investigation of classified land
cover
Investigation of classified land
cover
Investigation of classified land
cover
Investigation of classified land
cover
Investigation of classified land
cover
Investigation of classified land
cover
Investigation of classified land
cover
Rules
Land cover map of Nepal
Thank youThank you
Ad

More Related Content

What's hot (20)

Remote sensing and digital image processing
Remote sensing and digital image processingRemote sensing and digital image processing
Remote sensing and digital image processing
DocumentStory
 
Digital image processing
Digital image processingDigital image processing
Digital image processing
Vandana Verma
 
Digital image processing
Digital image processingDigital image processing
Digital image processing
Dhaval Jalalpara
 
Digital photogrammetry
Digital photogrammetryDigital photogrammetry
Digital photogrammetry
Mr Amol Ghogare
 
Scanners, image resolution, orbit in remote sensing, pk mani
Scanners, image resolution, orbit in remote sensing, pk maniScanners, image resolution, orbit in remote sensing, pk mani
Scanners, image resolution, orbit in remote sensing, pk mani
P.K. Mani
 
Stereoscopic Parallax
Stereoscopic ParallaxStereoscopic Parallax
Stereoscopic Parallax
Siva Subramanian M
 
Stereoscopic parallax
Stereoscopic parallaxStereoscopic parallax
Stereoscopic parallax
Mr Amol Ghogare
 
Vector and Raster Data data model
Vector and Raster Data data modelVector and Raster Data data model
Vector and Raster Data data model
Calcutta University
 
GIS Modeling
GIS ModelingGIS Modeling
GIS Modeling
John Reiser
 
Image classification, remote sensing, P K MANI
Image classification, remote sensing, P K MANIImage classification, remote sensing, P K MANI
Image classification, remote sensing, P K MANI
P.K. Mani
 
Introduction to GIS
Introduction to GISIntroduction to GIS
Introduction to GIS
Hans van der Kwast
 
Thermal remote sensing
Thermal remote sensingThermal remote sensing
Thermal remote sensing
vidyasagar university
 
Thermal remote sensing
Thermal remote sensing   Thermal remote sensing
Thermal remote sensing
Rahat Malik
 
Geodatabases
GeodatabasesGeodatabases
Geodatabases
John Reiser
 
DATA in GIS and DATA Query
DATA in GIS and DATA QueryDATA in GIS and DATA Query
DATA in GIS and DATA Query
KU Leuven
 
REMOTE SENSING
REMOTE SENSINGREMOTE SENSING
REMOTE SENSING
KANNAN
 
Geographical Information System (GIS)
Geographical Information System (GIS)Geographical Information System (GIS)
Geographical Information System (GIS)
Malla Reddy University
 
Chapter 5: Remote sensing
Chapter 5: Remote sensingChapter 5: Remote sensing
Chapter 5: Remote sensing
Shankar Gangaju
 
Microwave remote sensing
Microwave remote sensingMicrowave remote sensing
Microwave remote sensing
Rohit Kumar
 
Aerial photogrammetry 05
Aerial photogrammetry  05Aerial photogrammetry  05
Aerial photogrammetry 05
Rajesh Rajguru
 
Remote sensing and digital image processing
Remote sensing and digital image processingRemote sensing and digital image processing
Remote sensing and digital image processing
DocumentStory
 
Digital image processing
Digital image processingDigital image processing
Digital image processing
Vandana Verma
 
Scanners, image resolution, orbit in remote sensing, pk mani
Scanners, image resolution, orbit in remote sensing, pk maniScanners, image resolution, orbit in remote sensing, pk mani
Scanners, image resolution, orbit in remote sensing, pk mani
P.K. Mani
 
Vector and Raster Data data model
Vector and Raster Data data modelVector and Raster Data data model
Vector and Raster Data data model
Calcutta University
 
Image classification, remote sensing, P K MANI
Image classification, remote sensing, P K MANIImage classification, remote sensing, P K MANI
Image classification, remote sensing, P K MANI
P.K. Mani
 
Thermal remote sensing
Thermal remote sensing   Thermal remote sensing
Thermal remote sensing
Rahat Malik
 
DATA in GIS and DATA Query
DATA in GIS and DATA QueryDATA in GIS and DATA Query
DATA in GIS and DATA Query
KU Leuven
 
REMOTE SENSING
REMOTE SENSINGREMOTE SENSING
REMOTE SENSING
KANNAN
 
Chapter 5: Remote sensing
Chapter 5: Remote sensingChapter 5: Remote sensing
Chapter 5: Remote sensing
Shankar Gangaju
 
Microwave remote sensing
Microwave remote sensingMicrowave remote sensing
Microwave remote sensing
Rohit Kumar
 
Aerial photogrammetry 05
Aerial photogrammetry  05Aerial photogrammetry  05
Aerial photogrammetry 05
Rajesh Rajguru
 

Viewers also liked (20)

Image classification and land cover mapping
Image classification and land cover mappingImage classification and land cover mapping
Image classification and land cover mapping
Kabir Uddin
 
Ecognition object base image classifications bangladesh
Ecognition object base image classifications bangladeshEcognition object base image classifications bangladesh
Ecognition object base image classifications bangladesh
Cresencio Turpo
 
eCognition Image Analysis System
eCognition Image Analysis SystemeCognition Image Analysis System
eCognition Image Analysis System
CAPIGI
 
Band Combination of Landsat 8 Earth-observing Satellite Images
Band Combination of Landsat 8 Earth-observing Satellite ImagesBand Combination of Landsat 8 Earth-observing Satellite Images
Band Combination of Landsat 8 Earth-observing Satellite Images
Kabir Uddin
 
Accuracy assessment of Remote Sensing Data
Accuracy assessment of Remote Sensing DataAccuracy assessment of Remote Sensing Data
Accuracy assessment of Remote Sensing Data
Muhammad Zubair
 
Use of remote sensing for land cover monitoring servir science applications
Use of remote sensing for land cover monitoring servir science applicationsUse of remote sensing for land cover monitoring servir science applications
Use of remote sensing for land cover monitoring servir science applications
Kabir Uddin
 
Introduce variable/ Indices using landsat image
Introduce variable/ Indices using landsat imageIntroduce variable/ Indices using landsat image
Introduce variable/ Indices using landsat image
Kabir Uddin
 
E Cognition User Summit2009 Pregesbauer Geo Info Li Dar Basic Landcover
E Cognition User Summit2009 Pregesbauer Geo Info Li Dar Basic LandcoverE Cognition User Summit2009 Pregesbauer Geo Info Li Dar Basic Landcover
E Cognition User Summit2009 Pregesbauer Geo Info Li Dar Basic Landcover
Trimble Geospatial Munich
 
A review of change detection techniques
A review of change detection techniques A review of change detection techniques
A review of change detection techniques
abhishek_bhatt
 
Supervised and unsupervised classification techniques for satellite imagery i...
Supervised and unsupervised classification techniques for satellite imagery i...Supervised and unsupervised classification techniques for satellite imagery i...
Supervised and unsupervised classification techniques for satellite imagery i...
gaup_geo
 
Discriminative illumination: Per-Pixel Classification of Raw Materials based...
Discriminative illumination:  Per-Pixel Classification of Raw Materials based...Discriminative illumination:  Per-Pixel Classification of Raw Materials based...
Discriminative illumination: Per-Pixel Classification of Raw Materials based...
Chika Inoshita
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
SlideShare
 
Multichannel Interaction Strategies and the Customer Experience
Multichannel Interaction Strategies and the Customer ExperienceMultichannel Interaction Strategies and the Customer Experience
Multichannel Interaction Strategies and the Customer Experience
Vladimir Dimitroff
 
SAGA GIS 2.0.7
SAGA GIS 2.0.7SAGA GIS 2.0.7
SAGA GIS 2.0.7
Tomislav Hengl
 
Marketing to the Segment of One
Marketing to the Segment of OneMarketing to the Segment of One
Marketing to the Segment of One
NUS-ISS
 
What’s New in eCognition 8.9
What’s New in eCognition 8.9What’s New in eCognition 8.9
What’s New in eCognition 8.9
Trimble Geospatial Munich
 
E Cognition User Summit2009 G Binnig Definiens
E Cognition User Summit2009 G Binnig DefiniensE Cognition User Summit2009 G Binnig Definiens
E Cognition User Summit2009 G Binnig Definiens
Trimble Geospatial Munich
 
Basics of dip
Basics of dipBasics of dip
Basics of dip
Prateek Omer
 
Accuracy assessment of land cover
Accuracy assessment of land coverAccuracy assessment of land cover
Accuracy assessment of land cover
Kabir Uddin
 
Remote sensing
Remote sensingRemote sensing
Remote sensing
Lokender Yadav
 
Image classification and land cover mapping
Image classification and land cover mappingImage classification and land cover mapping
Image classification and land cover mapping
Kabir Uddin
 
Ecognition object base image classifications bangladesh
Ecognition object base image classifications bangladeshEcognition object base image classifications bangladesh
Ecognition object base image classifications bangladesh
Cresencio Turpo
 
eCognition Image Analysis System
eCognition Image Analysis SystemeCognition Image Analysis System
eCognition Image Analysis System
CAPIGI
 
Band Combination of Landsat 8 Earth-observing Satellite Images
Band Combination of Landsat 8 Earth-observing Satellite ImagesBand Combination of Landsat 8 Earth-observing Satellite Images
Band Combination of Landsat 8 Earth-observing Satellite Images
Kabir Uddin
 
Accuracy assessment of Remote Sensing Data
Accuracy assessment of Remote Sensing DataAccuracy assessment of Remote Sensing Data
Accuracy assessment of Remote Sensing Data
Muhammad Zubair
 
Use of remote sensing for land cover monitoring servir science applications
Use of remote sensing for land cover monitoring servir science applicationsUse of remote sensing for land cover monitoring servir science applications
Use of remote sensing for land cover monitoring servir science applications
Kabir Uddin
 
Introduce variable/ Indices using landsat image
Introduce variable/ Indices using landsat imageIntroduce variable/ Indices using landsat image
Introduce variable/ Indices using landsat image
Kabir Uddin
 
E Cognition User Summit2009 Pregesbauer Geo Info Li Dar Basic Landcover
E Cognition User Summit2009 Pregesbauer Geo Info Li Dar Basic LandcoverE Cognition User Summit2009 Pregesbauer Geo Info Li Dar Basic Landcover
E Cognition User Summit2009 Pregesbauer Geo Info Li Dar Basic Landcover
Trimble Geospatial Munich
 
A review of change detection techniques
A review of change detection techniques A review of change detection techniques
A review of change detection techniques
abhishek_bhatt
 
Supervised and unsupervised classification techniques for satellite imagery i...
Supervised and unsupervised classification techniques for satellite imagery i...Supervised and unsupervised classification techniques for satellite imagery i...
Supervised and unsupervised classification techniques for satellite imagery i...
gaup_geo
 
Discriminative illumination: Per-Pixel Classification of Raw Materials based...
Discriminative illumination:  Per-Pixel Classification of Raw Materials based...Discriminative illumination:  Per-Pixel Classification of Raw Materials based...
Discriminative illumination: Per-Pixel Classification of Raw Materials based...
Chika Inoshita
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
SlideShare
 
Multichannel Interaction Strategies and the Customer Experience
Multichannel Interaction Strategies and the Customer ExperienceMultichannel Interaction Strategies and the Customer Experience
Multichannel Interaction Strategies and the Customer Experience
Vladimir Dimitroff
 
Marketing to the Segment of One
Marketing to the Segment of OneMarketing to the Segment of One
Marketing to the Segment of One
NUS-ISS
 
E Cognition User Summit2009 G Binnig Definiens
E Cognition User Summit2009 G Binnig DefiniensE Cognition User Summit2009 G Binnig Definiens
E Cognition User Summit2009 G Binnig Definiens
Trimble Geospatial Munich
 
Accuracy assessment of land cover
Accuracy assessment of land coverAccuracy assessment of land cover
Accuracy assessment of land cover
Kabir Uddin
 
Ad

Similar to Object Based Image Analysis (20)

Improving the Accuracy of Object Based Supervised Image Classification using ...
Improving the Accuracy of Object Based Supervised Image Classification using ...Improving the Accuracy of Object Based Supervised Image Classification using ...
Improving the Accuracy of Object Based Supervised Image Classification using ...
CSCJournals
 
Automated features extraction from satellite images.
Automated features extraction from satellite images.Automated features extraction from satellite images.
Automated features extraction from satellite images.
HimanshuGupta1081
 
Image Segmentation from RGBD Images by 3D Point Cloud Attributes and High-Lev...
Image Segmentation from RGBD Images by 3D Point Cloud Attributes and High-Lev...Image Segmentation from RGBD Images by 3D Point Cloud Attributes and High-Lev...
Image Segmentation from RGBD Images by 3D Point Cloud Attributes and High-Lev...
CSCJournals
 
Feature extraction with eCognition developer
Feature extraction with eCognition developerFeature extraction with eCognition developer
Feature extraction with eCognition developer
Yannick Arthur DOUNGMO, M.Eng, CSPO®
 
Applications of spatial features in cbir a survey
Applications of spatial features in cbir  a surveyApplications of spatial features in cbir  a survey
Applications of spatial features in cbir a survey
csandit
 
APPLICATIONS OF SPATIAL FEATURES IN CBIR : A SURVEY
APPLICATIONS OF SPATIAL FEATURES IN CBIR : A SURVEYAPPLICATIONS OF SPATIAL FEATURES IN CBIR : A SURVEY
APPLICATIONS OF SPATIAL FEATURES IN CBIR : A SURVEY
cscpconf
 
Dip lect2-Machine Vision Fundamentals
Dip  lect2-Machine Vision Fundamentals Dip  lect2-Machine Vision Fundamentals
Dip lect2-Machine Vision Fundamentals
Abdul Abbasi
 
Massive Regional Texture Extraction for Aerial and Natural Images
Massive Regional Texture Extraction for Aerial and Natural ImagesMassive Regional Texture Extraction for Aerial and Natural Images
Massive Regional Texture Extraction for Aerial and Natural Images
IOSR Journals
 
Review of Image Segmentation Techniques based on Region Merging Approach
Review of Image Segmentation Techniques based on Region Merging ApproachReview of Image Segmentation Techniques based on Region Merging Approach
Review of Image Segmentation Techniques based on Region Merging Approach
Editor IJMTER
 
COLOUR BASED IMAGE SEGMENTATION USING HYBRID KMEANS WITH WATERSHED SEGMENTATION
COLOUR BASED IMAGE SEGMENTATION USING HYBRID KMEANS WITH WATERSHED SEGMENTATIONCOLOUR BASED IMAGE SEGMENTATION USING HYBRID KMEANS WITH WATERSHED SEGMENTATION
COLOUR BASED IMAGE SEGMENTATION USING HYBRID KMEANS WITH WATERSHED SEGMENTATION
IAEME Publication
 
Image processing.pdf
Image processing.pdfImage processing.pdf
Image processing.pdf
JasaRChoudhary
 
IRJET- Saliency based Image Co-Segmentation
IRJET- Saliency based Image Co-SegmentationIRJET- Saliency based Image Co-Segmentation
IRJET- Saliency based Image Co-Segmentation
IRJET Journal
 
Content-Based Image Retrieval Case Study
Content-Based Image Retrieval Case StudyContent-Based Image Retrieval Case Study
Content-Based Image Retrieval Case Study
Lisa Kennedy
 
OBJECT DETECTION AND RECOGNITION: A SURVEY
OBJECT DETECTION AND RECOGNITION: A SURVEYOBJECT DETECTION AND RECOGNITION: A SURVEY
OBJECT DETECTION AND RECOGNITION: A SURVEY
Journal For Research
 
Machine Vision lecture notes for Unit 3.ppt
Machine Vision lecture notes for Unit 3.pptMachine Vision lecture notes for Unit 3.ppt
Machine Vision lecture notes for Unit 3.ppt
SATHISHKUMARSD1
 
L0816166
L0816166L0816166
L0816166
IOSR Journals
 
Digital image processing & computer graphics
Digital image processing & computer graphicsDigital image processing & computer graphics
Digital image processing & computer graphics
Ankit Garg
 
Fpga implementation of image segmentation by using edge detection based on so...
Fpga implementation of image segmentation by using edge detection based on so...Fpga implementation of image segmentation by using edge detection based on so...
Fpga implementation of image segmentation by using edge detection based on so...
eSAT Journals
 
Fpga implementation of image segmentation by using edge detection based on so...
Fpga implementation of image segmentation by using edge detection based on so...Fpga implementation of image segmentation by using edge detection based on so...
Fpga implementation of image segmentation by using edge detection based on so...
eSAT Publishing House
 
IRJET - Computer-Assisted ALL, AML, CLL, CML Detection and Counting for D...
IRJET -  	  Computer-Assisted ALL, AML, CLL, CML Detection and Counting for D...IRJET -  	  Computer-Assisted ALL, AML, CLL, CML Detection and Counting for D...
IRJET - Computer-Assisted ALL, AML, CLL, CML Detection and Counting for D...
IRJET Journal
 
Improving the Accuracy of Object Based Supervised Image Classification using ...
Improving the Accuracy of Object Based Supervised Image Classification using ...Improving the Accuracy of Object Based Supervised Image Classification using ...
Improving the Accuracy of Object Based Supervised Image Classification using ...
CSCJournals
 
Automated features extraction from satellite images.
Automated features extraction from satellite images.Automated features extraction from satellite images.
Automated features extraction from satellite images.
HimanshuGupta1081
 
Image Segmentation from RGBD Images by 3D Point Cloud Attributes and High-Lev...
Image Segmentation from RGBD Images by 3D Point Cloud Attributes and High-Lev...Image Segmentation from RGBD Images by 3D Point Cloud Attributes and High-Lev...
Image Segmentation from RGBD Images by 3D Point Cloud Attributes and High-Lev...
CSCJournals
 
Applications of spatial features in cbir a survey
Applications of spatial features in cbir  a surveyApplications of spatial features in cbir  a survey
Applications of spatial features in cbir a survey
csandit
 
APPLICATIONS OF SPATIAL FEATURES IN CBIR : A SURVEY
APPLICATIONS OF SPATIAL FEATURES IN CBIR : A SURVEYAPPLICATIONS OF SPATIAL FEATURES IN CBIR : A SURVEY
APPLICATIONS OF SPATIAL FEATURES IN CBIR : A SURVEY
cscpconf
 
Dip lect2-Machine Vision Fundamentals
Dip  lect2-Machine Vision Fundamentals Dip  lect2-Machine Vision Fundamentals
Dip lect2-Machine Vision Fundamentals
Abdul Abbasi
 
Massive Regional Texture Extraction for Aerial and Natural Images
Massive Regional Texture Extraction for Aerial and Natural ImagesMassive Regional Texture Extraction for Aerial and Natural Images
Massive Regional Texture Extraction for Aerial and Natural Images
IOSR Journals
 
Review of Image Segmentation Techniques based on Region Merging Approach
Review of Image Segmentation Techniques based on Region Merging ApproachReview of Image Segmentation Techniques based on Region Merging Approach
Review of Image Segmentation Techniques based on Region Merging Approach
Editor IJMTER
 
COLOUR BASED IMAGE SEGMENTATION USING HYBRID KMEANS WITH WATERSHED SEGMENTATION
COLOUR BASED IMAGE SEGMENTATION USING HYBRID KMEANS WITH WATERSHED SEGMENTATIONCOLOUR BASED IMAGE SEGMENTATION USING HYBRID KMEANS WITH WATERSHED SEGMENTATION
COLOUR BASED IMAGE SEGMENTATION USING HYBRID KMEANS WITH WATERSHED SEGMENTATION
IAEME Publication
 
IRJET- Saliency based Image Co-Segmentation
IRJET- Saliency based Image Co-SegmentationIRJET- Saliency based Image Co-Segmentation
IRJET- Saliency based Image Co-Segmentation
IRJET Journal
 
Content-Based Image Retrieval Case Study
Content-Based Image Retrieval Case StudyContent-Based Image Retrieval Case Study
Content-Based Image Retrieval Case Study
Lisa Kennedy
 
OBJECT DETECTION AND RECOGNITION: A SURVEY
OBJECT DETECTION AND RECOGNITION: A SURVEYOBJECT DETECTION AND RECOGNITION: A SURVEY
OBJECT DETECTION AND RECOGNITION: A SURVEY
Journal For Research
 
Machine Vision lecture notes for Unit 3.ppt
Machine Vision lecture notes for Unit 3.pptMachine Vision lecture notes for Unit 3.ppt
Machine Vision lecture notes for Unit 3.ppt
SATHISHKUMARSD1
 
Digital image processing & computer graphics
Digital image processing & computer graphicsDigital image processing & computer graphics
Digital image processing & computer graphics
Ankit Garg
 
Fpga implementation of image segmentation by using edge detection based on so...
Fpga implementation of image segmentation by using edge detection based on so...Fpga implementation of image segmentation by using edge detection based on so...
Fpga implementation of image segmentation by using edge detection based on so...
eSAT Journals
 
Fpga implementation of image segmentation by using edge detection based on so...
Fpga implementation of image segmentation by using edge detection based on so...Fpga implementation of image segmentation by using edge detection based on so...
Fpga implementation of image segmentation by using edge detection based on so...
eSAT Publishing House
 
IRJET - Computer-Assisted ALL, AML, CLL, CML Detection and Counting for D...
IRJET -  	  Computer-Assisted ALL, AML, CLL, CML Detection and Counting for D...IRJET -  	  Computer-Assisted ALL, AML, CLL, CML Detection and Counting for D...
IRJET - Computer-Assisted ALL, AML, CLL, CML Detection and Counting for D...
IRJET Journal
 
Ad

Recently uploaded (20)

How To Maximize Sales Performance using Odoo 18 Diverse views in sales module
How To Maximize Sales Performance using Odoo 18 Diverse views in sales moduleHow To Maximize Sales Performance using Odoo 18 Diverse views in sales module
How To Maximize Sales Performance using Odoo 18 Diverse views in sales module
Celine George
 
INSULIN.pptx by Arka Das (Bsc. Critical care technology)
INSULIN.pptx by Arka Das (Bsc. Critical care technology)INSULIN.pptx by Arka Das (Bsc. Critical care technology)
INSULIN.pptx by Arka Das (Bsc. Critical care technology)
ArkaDas54
 
The role of wall art in interior designing
The role of wall art in interior designingThe role of wall art in interior designing
The role of wall art in interior designing
meghaark2110
 
Pope Leo XIV, the first Pope from North America.pptx
Pope Leo XIV, the first Pope from North America.pptxPope Leo XIV, the first Pope from North America.pptx
Pope Leo XIV, the first Pope from North America.pptx
Martin M Flynn
 
E-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26ASE-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26AS
Abinash Palangdar
 
GENERAL QUIZ PRELIMS | QUIZ CLUB OF PSGCAS | 4 MARCH 2025 .pdf
GENERAL QUIZ PRELIMS | QUIZ CLUB OF PSGCAS | 4 MARCH 2025 .pdfGENERAL QUIZ PRELIMS | QUIZ CLUB OF PSGCAS | 4 MARCH 2025 .pdf
GENERAL QUIZ PRELIMS | QUIZ CLUB OF PSGCAS | 4 MARCH 2025 .pdf
Quiz Club of PSG College of Arts & Science
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
Nguyen Thanh Tu Collection
 
How to Add Button in Chatter in Odoo 18 - Odoo Slides
How to Add Button in Chatter in Odoo 18 - Odoo SlidesHow to Add Button in Chatter in Odoo 18 - Odoo Slides
How to Add Button in Chatter in Odoo 18 - Odoo Slides
Celine George
 
How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18
Celine George
 
Bipolar Junction Transistors (BJTs): Basics, Construction & Configurations
Bipolar Junction Transistors (BJTs): Basics, Construction & ConfigurationsBipolar Junction Transistors (BJTs): Basics, Construction & Configurations
Bipolar Junction Transistors (BJTs): Basics, Construction & Configurations
GS Virdi
 
libbys peer assesment.docx..............
libbys peer assesment.docx..............libbys peer assesment.docx..............
libbys peer assesment.docx..............
19lburrell
 
YSPH VMOC Special Report - Measles Outbreak Southwest US 5-14-2025 .pptx
YSPH VMOC Special Report - Measles Outbreak  Southwest US 5-14-2025  .pptxYSPH VMOC Special Report - Measles Outbreak  Southwest US 5-14-2025  .pptx
YSPH VMOC Special Report - Measles Outbreak Southwest US 5-14-2025 .pptx
Yale School of Public Health - The Virtual Medical Operations Center (VMOC)
 
PUBH1000 Slides - Module 11: Governance for Health
PUBH1000 Slides - Module 11: Governance for HealthPUBH1000 Slides - Module 11: Governance for Health
PUBH1000 Slides - Module 11: Governance for Health
JonathanHallett4
 
Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...
Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...
Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...
parmarjuli1412
 
Cyber security COPA ITI MCQ Top Questions
Cyber security COPA ITI MCQ Top QuestionsCyber security COPA ITI MCQ Top Questions
Cyber security COPA ITI MCQ Top Questions
SONU HEETSON
 
COPA Apprentice exam Questions and answers PDF
COPA Apprentice exam Questions and answers PDFCOPA Apprentice exam Questions and answers PDF
COPA Apprentice exam Questions and answers PDF
SONU HEETSON
 
MCQS (EMERGENCY NURSING) DR. NASIR MUSTAFA
MCQS (EMERGENCY NURSING) DR. NASIR MUSTAFAMCQS (EMERGENCY NURSING) DR. NASIR MUSTAFA
MCQS (EMERGENCY NURSING) DR. NASIR MUSTAFA
Dr. Nasir Mustafa
 
MICROBIAL GENETICS -tranformation and tranduction.pdf
MICROBIAL GENETICS -tranformation and tranduction.pdfMICROBIAL GENETICS -tranformation and tranduction.pdf
MICROBIAL GENETICS -tranformation and tranduction.pdf
DHARMENDRA SAHU
 
antiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidenceantiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidence
PrachiSontakke5
 
Peer Assessment_ Unit 2 Skills Development for Live Performance - for Libby.docx
Peer Assessment_ Unit 2 Skills Development for Live Performance - for Libby.docxPeer Assessment_ Unit 2 Skills Development for Live Performance - for Libby.docx
Peer Assessment_ Unit 2 Skills Development for Live Performance - for Libby.docx
19lburrell
 
How To Maximize Sales Performance using Odoo 18 Diverse views in sales module
How To Maximize Sales Performance using Odoo 18 Diverse views in sales moduleHow To Maximize Sales Performance using Odoo 18 Diverse views in sales module
How To Maximize Sales Performance using Odoo 18 Diverse views in sales module
Celine George
 
INSULIN.pptx by Arka Das (Bsc. Critical care technology)
INSULIN.pptx by Arka Das (Bsc. Critical care technology)INSULIN.pptx by Arka Das (Bsc. Critical care technology)
INSULIN.pptx by Arka Das (Bsc. Critical care technology)
ArkaDas54
 
The role of wall art in interior designing
The role of wall art in interior designingThe role of wall art in interior designing
The role of wall art in interior designing
meghaark2110
 
Pope Leo XIV, the first Pope from North America.pptx
Pope Leo XIV, the first Pope from North America.pptxPope Leo XIV, the first Pope from North America.pptx
Pope Leo XIV, the first Pope from North America.pptx
Martin M Flynn
 
E-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26ASE-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26AS
Abinash Palangdar
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
Nguyen Thanh Tu Collection
 
How to Add Button in Chatter in Odoo 18 - Odoo Slides
How to Add Button in Chatter in Odoo 18 - Odoo SlidesHow to Add Button in Chatter in Odoo 18 - Odoo Slides
How to Add Button in Chatter in Odoo 18 - Odoo Slides
Celine George
 
How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18
Celine George
 
Bipolar Junction Transistors (BJTs): Basics, Construction & Configurations
Bipolar Junction Transistors (BJTs): Basics, Construction & ConfigurationsBipolar Junction Transistors (BJTs): Basics, Construction & Configurations
Bipolar Junction Transistors (BJTs): Basics, Construction & Configurations
GS Virdi
 
libbys peer assesment.docx..............
libbys peer assesment.docx..............libbys peer assesment.docx..............
libbys peer assesment.docx..............
19lburrell
 
PUBH1000 Slides - Module 11: Governance for Health
PUBH1000 Slides - Module 11: Governance for HealthPUBH1000 Slides - Module 11: Governance for Health
PUBH1000 Slides - Module 11: Governance for Health
JonathanHallett4
 
Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...
Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...
Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...
parmarjuli1412
 
Cyber security COPA ITI MCQ Top Questions
Cyber security COPA ITI MCQ Top QuestionsCyber security COPA ITI MCQ Top Questions
Cyber security COPA ITI MCQ Top Questions
SONU HEETSON
 
COPA Apprentice exam Questions and answers PDF
COPA Apprentice exam Questions and answers PDFCOPA Apprentice exam Questions and answers PDF
COPA Apprentice exam Questions and answers PDF
SONU HEETSON
 
MCQS (EMERGENCY NURSING) DR. NASIR MUSTAFA
MCQS (EMERGENCY NURSING) DR. NASIR MUSTAFAMCQS (EMERGENCY NURSING) DR. NASIR MUSTAFA
MCQS (EMERGENCY NURSING) DR. NASIR MUSTAFA
Dr. Nasir Mustafa
 
MICROBIAL GENETICS -tranformation and tranduction.pdf
MICROBIAL GENETICS -tranformation and tranduction.pdfMICROBIAL GENETICS -tranformation and tranduction.pdf
MICROBIAL GENETICS -tranformation and tranduction.pdf
DHARMENDRA SAHU
 
antiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidenceantiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidence
PrachiSontakke5
 
Peer Assessment_ Unit 2 Skills Development for Live Performance - for Libby.docx
Peer Assessment_ Unit 2 Skills Development for Live Performance - for Libby.docxPeer Assessment_ Unit 2 Skills Development for Live Performance - for Libby.docx
Peer Assessment_ Unit 2 Skills Development for Live Performance - for Libby.docx
19lburrell
 

Object Based Image Analysis

  • 1. International Centre for Integrated Mountain Development Kathmandu, Nepal Object-Based Image Analysis (GEOBIA) Kabir Uddin GIS and remote sensing analyst Email: Kabir.Uddin@icimod.org kabir.Uddin.bd@gmail.com
  • 2. - The last few decades have seen high levels of deforestation and forest degradation in the region. - The changes in forest cover due to growth dynamics, management, harvest and natural disturbances may change the role and function of forest ecosystems. - Land use conversions from forest to other land uses often result in substantial loss of carbon from the biomass pool. What happening in the region
  • 3. Development of baseline information The use of satellites to monitor processes and trends at the global scale is essential in the context of climate change
  • 4. Land cover and land use change detection using remote sensing and geospatial data provides baseline information for assessing the climate change impacts on habitats and biodiversity, as well as natural resources, in the target areas.
  • 6. • The process of sorting pixels into a number of data categories based on their data file values • The process of reducing images to information classes Image Classification
  • 7. Image classification techniques There are different types of classification procedures: ● Unsupervised ● Supervised ● Knowledge base ● Object base ● Others
  • 8. Unsupervised classification – The process of automatically segmenting an image into spectral classes based on natural groupings found in the data – The process of identifying land cover classes and naming them Label Bare Agriculture Forest Grass Water ISODATA Class 1 Class 2 Class 3 Class 4 Class 5 Class Names
  • 9. Supervised classification – the process of using samples of known identity (i.e., pixels already assigned to information classes) to classify pixels of unknown identity (i.e., all the other pixels in the image)
  • 10. Object based image analysis Before knowing more details about object based image analysis lets use relatively simple example
  • 11. Object based image analysis Part of the application of GEOBIA lets extract water from the high resolution image. When visually inspecting data sets looks all the blue pixel should be water. √ √ √ . . . . . . . . . . . . . . . . ..... . . . .
  • 12. Object based image analysis Part of the application of GEOBIA lets extract water from the high resolution image. When visually inspecting data sets looks all the blue pixel should be water. √ √ √ . . . . . . . . . . . . . . . . ..... . . . . √ √
  • 13. Object based image analysis Part of the application of GEOBIA lets extract water from the high resolution image. When visually inspecting data sets looks all the blue pixel should be water. . . . . . . . . . . . . . . . . ..... . . . .
  • 14. Object based image analysis
  • 15. Object based image analysis – Color Statistics – Shape – Texture – Hierarchy – Relations to... ...neighbor objects ...super-objects ...sub-objects
  • 16. Object based image analysis – Color Statistics – Shape – Texture – Hierarchy – Relations to... ...neighbor objects ...super-objects ...sub-objects
  • 17. Object based image analysis • Object-Based Image Analysis also called Geographic Object-Based Image Analysis (GEOBIA) and it is a sub- discipline of geoinformation science. Object – based image analysis a technique used to analyze digital imagery. OBIA developed relatively recently compared to traditional pixel-based image analysis. • Pixel-based image analysis is based on the information in each pixel, object based image analysis is based on information from a set of similar pixels called objects or image objects.
  • 18. Software for Object Based Classification eCognition/ Definiens IDRISI ERDAS Imagine ENVI MADCAT
  • 19. IMAGINE Objective Automated Feature Extraction Reduce the labor, time and cost associated with intensive manual digitization. Repeatability Reliably maintain geospatial content by re-using your feature models. Emulates Human Vision True object processing taps into the human visual system of image interpretation.
  • 21. IMAGINE Objective Image segmentation in IMAGINE Objective
  • 25. Object based image analysis using MadCat MadCat (MApping Device - Change Analysis Tool) is software mainly devoted to optimizing the production of vector polygon based maps. It is part of the GEOvis set of tools developed by FAO The software also includes a module for change assessment and analysis MadCat version 3.1.0 Release (12.02.2009). MadCat is FREE
  • 26. Object based image analysis using MadCat
  • 27. eCognition/Definiens • eCognition/Definiens software employs a flexible approach to image analysis, solution creation and adaption • Definiens Cognition Network Technology® has been developed by Nobel Laureate, Prof. Dr. Gerd Binnig and his team • In 2000, Definiens (eCognition) came in market • In 2003 Definiens Developer along with Definiens eCognition™ Server was introduced. Now, Definiens Developer 8 with updated versions is available
  • 28. eCognition Developer … is the development environment for object-based image analysis. eCognition Software Suite eCognition Architect … provides an easy-to-use front end for non-technical professionals allowing them to leverage eCognition technology. eCognition Server … provides a processing environment for the batch execution of image analysis jobs.
  • 29. eCognition Developer • Develop rule sets • Develop applications • Combine, modify and calibrate rule sets • Process data • Execute and monitor analysis • Review and edit results Product Components:  eCognition Developer client  Quick Map Mode  User Guide & Reference Book  Guided Tours  Software Development Kit (SDK)
  • 30. eCognition Architect • Combine, modify and calibrate Applications • Process data • Execute and monitor analysis • Review and edit results Product Components  eCognition Architect client  Quick Map Mode  User Guide & Reference Book  Software Development Kit (SDK)
  • 31. eCognition Server • Batch process data • Dynamic load balancing • Service oriented architecture • Highly scalable Product components:  eCognition Server  HTML User Interface: Administrator Console  User Guide & Reference Book  Software Development Kit (SDK)
  • 32. Steps of land cover mapping Legend development and classification scheme Data acquisition Image rectification and enhancement Field training information Image segmentation Generate image index Assign rules Draft land cover map Validation and refining of land cover Change assessment Land cover map
  • 33. Segmentation • The first step of an eCognition image analysis is to cut the image into pieces, which serve as building blocks for further analysis – this step is called segmentation and there is a choice of several algorithms to do this. • The next step is to label these objects according to their attributes, such as shape, color and relative position to other objects.
  • 35. Types of Segmentation Chessboard segmentation Chessboard segmentation is the simplest segmentation available as it just splits the image into square objects with a size predefined by the user.
  • 36. Types of Segmentation Quadtree based segmentation Quadtree-based segmentation is similar to chessboard segmentation, but creates squares of differing sizes. Quadtree-based segmentation, very homogeneous regions typically produce larger squares than heterogeneous regions. Compared to multiresolution segmentation,quadtree-based segmentation is less heavy on resources.
  • 37. Types of Segmentation Contrast split segmentation Contrast split segmentation is similar to the multi-threshold segmentation approach. The contrast split segments the scene into dark and bright image objects based on a threshold value that maximizes the contrast between them.
  • 38. Types of Segmentation Contrast split segmentation Contrast split segmentation is similar to the multi-threshold segmentation approach. The contrast split segments the scene into dark and bright image objects based on a threshold value that maximizes the contrast between them.
  • 39. Types of Segmentation Spectral difference segmentation Spectral difference segmentation lets you merge neighboring image objects if the difference between their layer mean intensities is below the value given by the maximum spectral difference. It is designed to refine existing segmentation results, by merging spectrally similar image objects produced by previous segmentations and therefore is a bottom- up segmentation.
  • 40. Types of Segmentation Multiresolution segmentation Multiresolution Segmentation groups areas of similar pixel values into objects. Consequently homogeneous areas result in larger objects, heterogeneous areas in smaller ones. The Multiresolution Segmentation algorithm1 consecutively merges pixels or existing image objects. Essentially, the procedure identifies single image objects of one pixel in size and merges them with their neighbors, based on relative homogeneity criteria.
  • 41. Multiresolution Segmentation, Parameters Scale • The value of the scale parameter affects image segmentation by determining the size of image objects; • Defines the minimum size of the object through threshold value; • The larger the scale parameter, the more objects can be fused and the larger the objects grow;
  • 42. Image analysis assumptions • Similar features will have similar spectral responses. • The spectral response of a feature is unique with respect to all other features of interest. • If we quantify the spectral response of a known feature, we can use this information to find all occurrences of that feature.
  • 43. Object features in eCognition
  • 44. Generating arithmetic Feature  The Normalized Difference Vegetation Index (NDVI) is a standardized index allowing to generate an image displaying greenness (relative biomass)  Index values can range from -1.0 to 1.0, but vegetation values typically range between 0.1 and 0.7.  NDVI is related to vegetation is that healthy vegetation reflects very well in the near infrared part of the spectrum.  It can be seen from its mathematical definition that the NDVI of an area containing a dense vegetation canopy will tend to positive values (say 0.3 to 0.8) while clouds and snow fields will be characterized by negative values of this index. NDVI = (NIR - red) / (NIR + red)
  • 45. Land and Water Masks (LWM) Index values can range from 0 to 255, but water values typically range between 0 to 50 Water Mask = infra-red) / (green + .0001) * 100 (ETM+) Water Mask = Band 5) / (Band 2 + .0001) * 100
  • 46. Comparing features using the 2D feature space plot
  • 47. Comparing features using the 2D feature space plot
  • 48. Comparing features using the 2D feature space plot
  • 49. Comparing features using the 2D feature space plot
  • 59. Rules
  • 60. Land cover map of Nepal

Editor's Notes

  • #3: As you know land cover change is a significant contributor to environmental change. Land cover data documents how much of a region is covered by forests, wetlands, impervious surfaces, agriculture, and other land and water types. 
  翻译: