Given the impact of Machine Learning (ML) on individuals and the society, understanding how harm might
be occur throughout the ML life cycle becomes critical more than ever. By offering a framework to
determine distinct potential sources of downstream harm in ML pipeline, the paper demonstrates the
importance of choices throughout distinct phases of data collection, development, and deployment that
extend far beyond just model training. Relevant mitigation techniques are also suggested for being used
instead of merely relying on generic notions of what counts as fairness.