This document describes a study that uses machine learning algorithms to predict whether students will be placed in jobs after graduating. Specifically, it uses Naive Bayes and K-Nearest Neighbors classifiers to analyze historical student data and predict placements. The algorithms consider parameters like academic results, skills, and previous placement data to make predictions. This system aims to help institutions increase placement percentages by identifying students' strengths and areas for improvement. It is intended to benefit both students in preparing for careers and placement cells in targeting support. Accurately predicting placements could boost a school's reputation by demonstrating career outcomes.