SlideShare a Scribd company logo
Matei Zaharia
@matei_zaharia
Large-Scale Data Science in
Apache Spark 2.0
Why Large-Scale?
More data = better models
Faster iteration = better models
Scale is the key tool of effective data science and AI
Two Forms of Scale
Hardware scalability
• Distribute work onto parallel hardware
• Utilize the hardware efficiently (e.g. fast, low-level code)
User scalability
• Write applications quickly
Often at odds!
What is Apache Spark?
Designed to tackle both challenges
• High-level APIs and libraries
• Efficient execution via parallelism
and compilation
Largest open source project in big data
• 1000+ contributors, 300+ packages,
3x user growth / year
SQLStreaming ML Graph
…
Spark for Data Science
Spark-specific libraries
• DataFrames, ML Pipelines, SQL, GraphFrames
• Parallelize common computations
Integration with existing libraries
• Call arbitrary Python / R / etc libraries at scale
Both expanding in Apache Spark 2.x
This Talk
Structured APIs in Spark 2.0
Scaling deep learning
Parallelizing traditional data science libraries
Original Spark API
Functional operations on collections of Java/Python objects
(RDDs)
+ Expressive and concise
- Hard to automatically optimize
lines = spark.textFile(“hdfs://...”) // RDD[String]
points = lines.map(lambda line: parsePoint(line)) // RDD[Point]
points.filter(lambda p: p.x > 100).count()
Structured APIs
New APIs for data with a table-like schema
• DataFrames (untyped), Datasets (typed), and SQL
Optimized storage and computation
• Binary storage based on schema (e.g. columnar)
• Compute via SQL-like expressions that Spark can compile
Structured API Example
events =
sc.read.json(“/logs”)
stats =
events.join(users)
.groupBy(“loc”,“status”)
.avg(“duration”)
errors = stats.where(
stats.status == “ERR”)
DataFrame API Optimized Plan Specialized Code
SCAN logs
SCAN
users
JOIN
AGG
FILTER
while(logs.hasNext) {
e = logs.next
if(e.status == “ERR”) {
u = users.get(e.uid)
key = (u.loc, e.status)
sum(key) += e.duration
count(key) += 1
}
}
...
Structured API Performance
0 2 4 6 8 10
RDD Scala
RDD Python
DataFrame Scala
DataFrame Python
DataFrame R
DataFrame SQL
Time for aggregation benchmark (s)
Higher-level and easier to optimize
Structured Streaming
Incrementalize an existing DataFrame/Dataset query
logs = ctx.read.format(“json”).open(“hdfs://logs”)
logs.groupBy(“userid”, “hour”).avg(“latency”)
.write.format(”parquet”)
.save(“s3://...”)
Example
batch job:
Structured Streaming
Incrementalize an existing DataFrame/Dataset query
logs = ctx.readStream.format(“json”).load(“hdfs://logs”)
logs.groupBy(“userid”, “hour”).avg(“latency”)
.writeStream.format(”parquet")
.start(“s3://...”)
Example as
streaming:
Structured APIs Elsewhere
ML Pipelines on DataFrames
• Pipeline API based on scikit-
learn
• Grid search, cross-validation,
etc
GraphFrames for graph
analytics
• Pattern matching à la Neo4J
tokenizer = Tokenizer()
tf = HashingTF(numFeatures=1000)
lr = LogisticRegression()
pipe = Pipeline([tokenizer, tf, lr])
model = pipe.fit(df)
tokenizer TF LR
modelDataFrame
This Talk
Structured APIs in Spark 2.0
Scaling deep learning
Parallelizing traditional data science libraries
Why Deep Learning on Spark?
Scale out model application to large data
• For transfer learning or model evaluation
Scale out parameter search: one model per machine
Distributed training: one model on multiple machines
Deep Learning Libraries
TensorFlow model eval on
DataFrames, for serving or transfer
learning
Distributed model training on CPUs
Run Caffe & TensorFlow on Spark
data
TensorFrames
TensorFlowOnSpark
BigDL
This Talk
Structured APIs in Spark 2.0
Scaling deep learning
Parallelizing traditional data science libraries
Parallelizing Existing Libraries
Spark Python/R APIs let
you scale out existing
libraries
• spark-sklearn for arbitrary
scikit-learn models
• SparkR dapply
from sklearn import svm, datasets
from spark_sklearn import GridSearchCV
iris = datasets.load_iris()
model = svm.SVC()
params = {
'kernel': ['linear', 'rbf’],
'C': [1, 10]
}
gs = GridSearchCV(sc, model, params)
gs.fit(iris.data, iris.target)
github.com/databricks/spark-sklearn
spark-sklearn Execution
Input data
Coming Soon
Native APIs for zero-copy data transfer into C libraries
Streamlined installation in Python:
pip install pyspark
To Learn More
See hundreds of talks on use
cases at Spark Summit
spark-summit.org .
Try interactive Spark tutorials
in Databricks Community
Edition
databricks.com/ce .
June 5-8, San Francisco
Ad

More Related Content

What's hot (20)

Robust and Scalable ETL over Cloud Storage with Apache Spark
Robust and Scalable ETL over Cloud Storage with Apache SparkRobust and Scalable ETL over Cloud Storage with Apache Spark
Robust and Scalable ETL over Cloud Storage with Apache Spark
Databricks
 
Not your Father's Database: Not Your Father’s Database: How to Use Apache® Sp...
Not your Father's Database: Not Your Father’s Database: How to Use Apache® Sp...Not your Father's Database: Not Your Father’s Database: How to Use Apache® Sp...
Not your Father's Database: Not Your Father’s Database: How to Use Apache® Sp...
Databricks
 
A look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutionsA look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutions
Databricks
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Databricks
 
Spark DataFrames and ML Pipelines
Spark DataFrames and ML PipelinesSpark DataFrames and ML Pipelines
Spark DataFrames and ML Pipelines
Databricks
 
Operational Tips For Deploying Apache Spark
Operational Tips For Deploying Apache SparkOperational Tips For Deploying Apache Spark
Operational Tips For Deploying Apache Spark
Databricks
 
New directions for Apache Spark in 2015
New directions for Apache Spark in 2015New directions for Apache Spark in 2015
New directions for Apache Spark in 2015
Databricks
 
New Developments in Spark
New Developments in SparkNew Developments in Spark
New Developments in Spark
Databricks
 
What's New in Apache Spark 2.3 & Why Should You Care
What's New in Apache Spark 2.3 & Why Should You CareWhat's New in Apache Spark 2.3 & Why Should You Care
What's New in Apache Spark 2.3 & Why Should You Care
Databricks
 
Spark Application Carousel: Highlights of Several Applications Built with Spark
Spark Application Carousel: Highlights of Several Applications Built with SparkSpark Application Carousel: Highlights of Several Applications Built with Spark
Spark Application Carousel: Highlights of Several Applications Built with Spark
Databricks
 
From DataFrames to Tungsten: A Peek into Spark's Future @ Spark Summit San Fr...
From DataFrames to Tungsten: A Peek into Spark's Future @ Spark Summit San Fr...From DataFrames to Tungsten: A Peek into Spark's Future @ Spark Summit San Fr...
From DataFrames to Tungsten: A Peek into Spark's Future @ Spark Summit San Fr...
Databricks
 
Spark streaming State of the Union - Strata San Jose 2015
Spark streaming State of the Union - Strata San Jose 2015Spark streaming State of the Union - Strata San Jose 2015
Spark streaming State of the Union - Strata San Jose 2015
Databricks
 
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Spark Summit
 
Operational Tips for Deploying Spark
Operational Tips for Deploying SparkOperational Tips for Deploying Spark
Operational Tips for Deploying Spark
Databricks
 
Building a Unified Data Pipeline with Apache Spark and XGBoost with Nan Zhu
Building a Unified Data Pipeline with Apache Spark and XGBoost with Nan ZhuBuilding a Unified Data Pipeline with Apache Spark and XGBoost with Nan Zhu
Building a Unified Data Pipeline with Apache Spark and XGBoost with Nan Zhu
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Spark Machine Learning: Adding Your Own Algorithms and Tools with Holden Kara...
Spark Machine Learning: Adding Your Own Algorithms and Tools with Holden Kara...Spark Machine Learning: Adding Your Own Algorithms and Tools with Holden Kara...
Spark Machine Learning: Adding Your Own Algorithms and Tools with Holden Kara...
Databricks
 
Recent Developments In SparkR For Advanced Analytics
Recent Developments In SparkR For Advanced AnalyticsRecent Developments In SparkR For Advanced Analytics
Recent Developments In SparkR For Advanced Analytics
Databricks
 
Machine Learning by Example - Apache Spark
Machine Learning by Example - Apache SparkMachine Learning by Example - Apache Spark
Machine Learning by Example - Apache Spark
Meeraj Kunnumpurath
 
Designing Distributed Machine Learning on Apache Spark
Designing Distributed Machine Learning on Apache SparkDesigning Distributed Machine Learning on Apache Spark
Designing Distributed Machine Learning on Apache Spark
Databricks
 
Robust and Scalable ETL over Cloud Storage with Apache Spark
Robust and Scalable ETL over Cloud Storage with Apache SparkRobust and Scalable ETL over Cloud Storage with Apache Spark
Robust and Scalable ETL over Cloud Storage with Apache Spark
Databricks
 
Not your Father's Database: Not Your Father’s Database: How to Use Apache® Sp...
Not your Father's Database: Not Your Father’s Database: How to Use Apache® Sp...Not your Father's Database: Not Your Father’s Database: How to Use Apache® Sp...
Not your Father's Database: Not Your Father’s Database: How to Use Apache® Sp...
Databricks
 
A look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutionsA look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutions
Databricks
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Databricks
 
Spark DataFrames and ML Pipelines
Spark DataFrames and ML PipelinesSpark DataFrames and ML Pipelines
Spark DataFrames and ML Pipelines
Databricks
 
Operational Tips For Deploying Apache Spark
Operational Tips For Deploying Apache SparkOperational Tips For Deploying Apache Spark
Operational Tips For Deploying Apache Spark
Databricks
 
New directions for Apache Spark in 2015
New directions for Apache Spark in 2015New directions for Apache Spark in 2015
New directions for Apache Spark in 2015
Databricks
 
New Developments in Spark
New Developments in SparkNew Developments in Spark
New Developments in Spark
Databricks
 
What's New in Apache Spark 2.3 & Why Should You Care
What's New in Apache Spark 2.3 & Why Should You CareWhat's New in Apache Spark 2.3 & Why Should You Care
What's New in Apache Spark 2.3 & Why Should You Care
Databricks
 
Spark Application Carousel: Highlights of Several Applications Built with Spark
Spark Application Carousel: Highlights of Several Applications Built with SparkSpark Application Carousel: Highlights of Several Applications Built with Spark
Spark Application Carousel: Highlights of Several Applications Built with Spark
Databricks
 
From DataFrames to Tungsten: A Peek into Spark's Future @ Spark Summit San Fr...
From DataFrames to Tungsten: A Peek into Spark's Future @ Spark Summit San Fr...From DataFrames to Tungsten: A Peek into Spark's Future @ Spark Summit San Fr...
From DataFrames to Tungsten: A Peek into Spark's Future @ Spark Summit San Fr...
Databricks
 
Spark streaming State of the Union - Strata San Jose 2015
Spark streaming State of the Union - Strata San Jose 2015Spark streaming State of the Union - Strata San Jose 2015
Spark streaming State of the Union - Strata San Jose 2015
Databricks
 
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Practical Large Scale Experiences with Spark 2.0 Machine Learning: Spark Summ...
Spark Summit
 
Operational Tips for Deploying Spark
Operational Tips for Deploying SparkOperational Tips for Deploying Spark
Operational Tips for Deploying Spark
Databricks
 
Building a Unified Data Pipeline with Apache Spark and XGBoost with Nan Zhu
Building a Unified Data Pipeline with Apache Spark and XGBoost with Nan ZhuBuilding a Unified Data Pipeline with Apache Spark and XGBoost with Nan Zhu
Building a Unified Data Pipeline with Apache Spark and XGBoost with Nan Zhu
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Spark Machine Learning: Adding Your Own Algorithms and Tools with Holden Kara...
Spark Machine Learning: Adding Your Own Algorithms and Tools with Holden Kara...Spark Machine Learning: Adding Your Own Algorithms and Tools with Holden Kara...
Spark Machine Learning: Adding Your Own Algorithms and Tools with Holden Kara...
Databricks
 
Recent Developments In SparkR For Advanced Analytics
Recent Developments In SparkR For Advanced AnalyticsRecent Developments In SparkR For Advanced Analytics
Recent Developments In SparkR For Advanced Analytics
Databricks
 
Machine Learning by Example - Apache Spark
Machine Learning by Example - Apache SparkMachine Learning by Example - Apache Spark
Machine Learning by Example - Apache Spark
Meeraj Kunnumpurath
 
Designing Distributed Machine Learning on Apache Spark
Designing Distributed Machine Learning on Apache SparkDesigning Distributed Machine Learning on Apache Spark
Designing Distributed Machine Learning on Apache Spark
Databricks
 

Similar to Large-Scale Data Science in Apache Spark 2.0 (20)

Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Databricks
 
SSR: Structured Streaming on R for Machine Learning with Felix Cheung
SSR: Structured Streaming on R for Machine Learning with Felix CheungSSR: Structured Streaming on R for Machine Learning with Felix Cheung
SSR: Structured Streaming on R for Machine Learning with Felix Cheung
Databricks
 
SSR: Structured Streaming for R and Machine Learning
SSR: Structured Streaming for R and Machine LearningSSR: Structured Streaming for R and Machine Learning
SSR: Structured Streaming for R and Machine Learning
felixcss
 
20170126 big data processing
20170126 big data processing20170126 big data processing
20170126 big data processing
Vienna Data Science Group
 
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Helena Edelson
 
Building data pipelines for modern data warehouse with Apache® Spark™ and .NE...
Building data pipelines for modern data warehouse with Apache® Spark™ and .NE...Building data pipelines for modern data warehouse with Apache® Spark™ and .NE...
Building data pipelines for modern data warehouse with Apache® Spark™ and .NE...
Michael Rys
 
Writing Continuous Applications with Structured Streaming in PySpark
Writing Continuous Applications with Structured Streaming in PySparkWriting Continuous Applications with Structured Streaming in PySpark
Writing Continuous Applications with Structured Streaming in PySpark
Databricks
 
In Memory Analytics with Apache Spark
In Memory Analytics with Apache SparkIn Memory Analytics with Apache Spark
In Memory Analytics with Apache Spark
Venkata Naga Ravi
 
Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)
Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)
Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)
Jason Dai
 
Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0
Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0
Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0
Databricks
 
SparkR: The Past, the Present and the Future-(Shivaram Venkataraman and Rui S...
SparkR: The Past, the Present and the Future-(Shivaram Venkataraman and Rui S...SparkR: The Past, the Present and the Future-(Shivaram Venkataraman and Rui S...
SparkR: The Past, the Present and the Future-(Shivaram Venkataraman and Rui S...
Spark Summit
 
Introduction to Spark (Intern Event Presentation)
Introduction to Spark (Intern Event Presentation)Introduction to Spark (Intern Event Presentation)
Introduction to Spark (Intern Event Presentation)
Databricks
 
Data Lakes with Azure Databricks
Data Lakes with Azure DatabricksData Lakes with Azure Databricks
Data Lakes with Azure Databricks
Data Con LA
 
Big Data, Ingeniería de datos, y Data Lakes en AWS
Big Data, Ingeniería de datos, y Data Lakes en AWSBig Data, Ingeniería de datos, y Data Lakes en AWS
Big Data, Ingeniería de datos, y Data Lakes en AWS
javier ramirez
 
HKOSCon18 - Chetan Khatri - Scaling TB's of Data with Apache Spark and Scala ...
HKOSCon18 - Chetan Khatri - Scaling TB's of Data with Apache Spark and Scala ...HKOSCon18 - Chetan Khatri - Scaling TB's of Data with Apache Spark and Scala ...
HKOSCon18 - Chetan Khatri - Scaling TB's of Data with Apache Spark and Scala ...
Chetan Khatri
 
Strata NYC 2015 - Supercharging R with Apache Spark
Strata NYC 2015 - Supercharging R with Apache SparkStrata NYC 2015 - Supercharging R with Apache Spark
Strata NYC 2015 - Supercharging R with Apache Spark
Databricks
 
Jump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with DatabricksJump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with Databricks
Anyscale
 
Unified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache SparkUnified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache Spark
C4Media
 
Transformation Processing Smackdown; Spark vs Hive vs Pig
Transformation Processing Smackdown; Spark vs Hive vs PigTransformation Processing Smackdown; Spark vs Hive vs Pig
Transformation Processing Smackdown; Spark vs Hive vs Pig
Lester Martin
 
ETL to ML: Use Apache Spark as an end to end tool for Advanced Analytics
ETL to ML: Use Apache Spark as an end to end tool for Advanced AnalyticsETL to ML: Use Apache Spark as an end to end tool for Advanced Analytics
ETL to ML: Use Apache Spark as an end to end tool for Advanced Analytics
Miklos Christine
 
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Databricks
 
SSR: Structured Streaming on R for Machine Learning with Felix Cheung
SSR: Structured Streaming on R for Machine Learning with Felix CheungSSR: Structured Streaming on R for Machine Learning with Felix Cheung
SSR: Structured Streaming on R for Machine Learning with Felix Cheung
Databricks
 
SSR: Structured Streaming for R and Machine Learning
SSR: Structured Streaming for R and Machine LearningSSR: Structured Streaming for R and Machine Learning
SSR: Structured Streaming for R and Machine Learning
felixcss
 
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Helena Edelson
 
Building data pipelines for modern data warehouse with Apache® Spark™ and .NE...
Building data pipelines for modern data warehouse with Apache® Spark™ and .NE...Building data pipelines for modern data warehouse with Apache® Spark™ and .NE...
Building data pipelines for modern data warehouse with Apache® Spark™ and .NE...
Michael Rys
 
Writing Continuous Applications with Structured Streaming in PySpark
Writing Continuous Applications with Structured Streaming in PySparkWriting Continuous Applications with Structured Streaming in PySpark
Writing Continuous Applications with Structured Streaming in PySpark
Databricks
 
In Memory Analytics with Apache Spark
In Memory Analytics with Apache SparkIn Memory Analytics with Apache Spark
In Memory Analytics with Apache Spark
Venkata Naga Ravi
 
Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)
Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)
Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)
Jason Dai
 
Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0
Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0
Spark Summit San Francisco 2016 - Matei Zaharia Keynote: Apache Spark 2.0
Databricks
 
SparkR: The Past, the Present and the Future-(Shivaram Venkataraman and Rui S...
SparkR: The Past, the Present and the Future-(Shivaram Venkataraman and Rui S...SparkR: The Past, the Present and the Future-(Shivaram Venkataraman and Rui S...
SparkR: The Past, the Present and the Future-(Shivaram Venkataraman and Rui S...
Spark Summit
 
Introduction to Spark (Intern Event Presentation)
Introduction to Spark (Intern Event Presentation)Introduction to Spark (Intern Event Presentation)
Introduction to Spark (Intern Event Presentation)
Databricks
 
Data Lakes with Azure Databricks
Data Lakes with Azure DatabricksData Lakes with Azure Databricks
Data Lakes with Azure Databricks
Data Con LA
 
Big Data, Ingeniería de datos, y Data Lakes en AWS
Big Data, Ingeniería de datos, y Data Lakes en AWSBig Data, Ingeniería de datos, y Data Lakes en AWS
Big Data, Ingeniería de datos, y Data Lakes en AWS
javier ramirez
 
HKOSCon18 - Chetan Khatri - Scaling TB's of Data with Apache Spark and Scala ...
HKOSCon18 - Chetan Khatri - Scaling TB's of Data with Apache Spark and Scala ...HKOSCon18 - Chetan Khatri - Scaling TB's of Data with Apache Spark and Scala ...
HKOSCon18 - Chetan Khatri - Scaling TB's of Data with Apache Spark and Scala ...
Chetan Khatri
 
Strata NYC 2015 - Supercharging R with Apache Spark
Strata NYC 2015 - Supercharging R with Apache SparkStrata NYC 2015 - Supercharging R with Apache Spark
Strata NYC 2015 - Supercharging R with Apache Spark
Databricks
 
Jump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with DatabricksJump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with Databricks
Anyscale
 
Unified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache SparkUnified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache Spark
C4Media
 
Transformation Processing Smackdown; Spark vs Hive vs Pig
Transformation Processing Smackdown; Spark vs Hive vs PigTransformation Processing Smackdown; Spark vs Hive vs Pig
Transformation Processing Smackdown; Spark vs Hive vs Pig
Lester Martin
 
ETL to ML: Use Apache Spark as an end to end tool for Advanced Analytics
ETL to ML: Use Apache Spark as an end to end tool for Advanced AnalyticsETL to ML: Use Apache Spark as an end to end tool for Advanced Analytics
ETL to ML: Use Apache Spark as an end to end tool for Advanced Analytics
Miklos Christine
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Ad

Recently uploaded (20)

!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
Ranking Google
 
Wilcom Embroidery Studio Crack Free Latest 2025
Wilcom Embroidery Studio Crack Free Latest 2025Wilcom Embroidery Studio Crack Free Latest 2025
Wilcom Embroidery Studio Crack Free Latest 2025
Web Designer
 
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb ClarkDeploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Peter Caitens
 
Why Tapitag Ranks Among the Best Digital Business Card Providers
Why Tapitag Ranks Among the Best Digital Business Card ProvidersWhy Tapitag Ranks Among the Best Digital Business Card Providers
Why Tapitag Ranks Among the Best Digital Business Card Providers
Tapitag
 
Orion Context Broker introduction 20250509
Orion Context Broker introduction 20250509Orion Context Broker introduction 20250509
Orion Context Broker introduction 20250509
Fermin Galan
 
Reinventing Microservices Efficiency and Innovation with Single-Runtime
Reinventing Microservices Efficiency and Innovation with Single-RuntimeReinventing Microservices Efficiency and Innovation with Single-Runtime
Reinventing Microservices Efficiency and Innovation with Single-Runtime
Natan Silnitsky
 
Passive House Canada Conference 2025 Presentation [Final]_v4.ppt
Passive House Canada Conference 2025 Presentation [Final]_v4.pptPassive House Canada Conference 2025 Presentation [Final]_v4.ppt
Passive House Canada Conference 2025 Presentation [Final]_v4.ppt
IES VE
 
Artificial hand using embedded system.pptx
Artificial hand using embedded system.pptxArtificial hand using embedded system.pptx
Artificial hand using embedded system.pptx
bhoomigowda12345
 
A Comprehensive Guide to CRM Software Benefits for Every Business Stage
A Comprehensive Guide to CRM Software Benefits for Every Business StageA Comprehensive Guide to CRM Software Benefits for Every Business Stage
A Comprehensive Guide to CRM Software Benefits for Every Business Stage
SynapseIndia
 
Adobe Media Encoder Crack FREE Download 2025
Adobe Media Encoder  Crack FREE Download 2025Adobe Media Encoder  Crack FREE Download 2025
Adobe Media Encoder Crack FREE Download 2025
zafranwaqar90
 
Troubleshooting JVM Outages – 3 Fortune 500 case studies
Troubleshooting JVM Outages – 3 Fortune 500 case studiesTroubleshooting JVM Outages – 3 Fortune 500 case studies
Troubleshooting JVM Outages – 3 Fortune 500 case studies
Tier1 app
 
Buy vs. Build: Unlocking the right path for your training tech
Buy vs. Build: Unlocking the right path for your training techBuy vs. Build: Unlocking the right path for your training tech
Buy vs. Build: Unlocking the right path for your training tech
Rustici Software
 
How I solved production issues with OpenTelemetry
How I solved production issues with OpenTelemetryHow I solved production issues with OpenTelemetry
How I solved production issues with OpenTelemetry
Cees Bos
 
Autodesk Inventor Crack (2025) Latest
Autodesk Inventor    Crack (2025) LatestAutodesk Inventor    Crack (2025) Latest
Autodesk Inventor Crack (2025) Latest
Google
 
Unit Two - Java Architecture and OOPS
Unit Two  -   Java Architecture and OOPSUnit Two  -   Java Architecture and OOPS
Unit Two - Java Architecture and OOPS
Nabin Dhakal
 
wAIred_LearnWithOutAI_JCON_14052025.pptx
wAIred_LearnWithOutAI_JCON_14052025.pptxwAIred_LearnWithOutAI_JCON_14052025.pptx
wAIred_LearnWithOutAI_JCON_14052025.pptx
SimonedeGijt
 
Best HR and Payroll Software in Bangladesh - accordHRM
Best HR and Payroll Software in Bangladesh - accordHRMBest HR and Payroll Software in Bangladesh - accordHRM
Best HR and Payroll Software in Bangladesh - accordHRM
accordHRM
 
[gbgcpp] Let's get comfortable with concepts
[gbgcpp] Let's get comfortable with concepts[gbgcpp] Let's get comfortable with concepts
[gbgcpp] Let's get comfortable with concepts
Dimitrios Platis
 
Memory Management and Leaks in Postgres from pgext.day 2025
Memory Management and Leaks in Postgres from pgext.day 2025Memory Management and Leaks in Postgres from pgext.day 2025
Memory Management and Leaks in Postgres from pgext.day 2025
Phil Eaton
 
Digital Twins Software Service in Belfast
Digital Twins Software Service in BelfastDigital Twins Software Service in Belfast
Digital Twins Software Service in Belfast
julia smits
 
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
Ranking Google
 
Wilcom Embroidery Studio Crack Free Latest 2025
Wilcom Embroidery Studio Crack Free Latest 2025Wilcom Embroidery Studio Crack Free Latest 2025
Wilcom Embroidery Studio Crack Free Latest 2025
Web Designer
 
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb ClarkDeploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Peter Caitens
 
Why Tapitag Ranks Among the Best Digital Business Card Providers
Why Tapitag Ranks Among the Best Digital Business Card ProvidersWhy Tapitag Ranks Among the Best Digital Business Card Providers
Why Tapitag Ranks Among the Best Digital Business Card Providers
Tapitag
 
Orion Context Broker introduction 20250509
Orion Context Broker introduction 20250509Orion Context Broker introduction 20250509
Orion Context Broker introduction 20250509
Fermin Galan
 
Reinventing Microservices Efficiency and Innovation with Single-Runtime
Reinventing Microservices Efficiency and Innovation with Single-RuntimeReinventing Microservices Efficiency and Innovation with Single-Runtime
Reinventing Microservices Efficiency and Innovation with Single-Runtime
Natan Silnitsky
 
Passive House Canada Conference 2025 Presentation [Final]_v4.ppt
Passive House Canada Conference 2025 Presentation [Final]_v4.pptPassive House Canada Conference 2025 Presentation [Final]_v4.ppt
Passive House Canada Conference 2025 Presentation [Final]_v4.ppt
IES VE
 
Artificial hand using embedded system.pptx
Artificial hand using embedded system.pptxArtificial hand using embedded system.pptx
Artificial hand using embedded system.pptx
bhoomigowda12345
 
A Comprehensive Guide to CRM Software Benefits for Every Business Stage
A Comprehensive Guide to CRM Software Benefits for Every Business StageA Comprehensive Guide to CRM Software Benefits for Every Business Stage
A Comprehensive Guide to CRM Software Benefits for Every Business Stage
SynapseIndia
 
Adobe Media Encoder Crack FREE Download 2025
Adobe Media Encoder  Crack FREE Download 2025Adobe Media Encoder  Crack FREE Download 2025
Adobe Media Encoder Crack FREE Download 2025
zafranwaqar90
 
Troubleshooting JVM Outages – 3 Fortune 500 case studies
Troubleshooting JVM Outages – 3 Fortune 500 case studiesTroubleshooting JVM Outages – 3 Fortune 500 case studies
Troubleshooting JVM Outages – 3 Fortune 500 case studies
Tier1 app
 
Buy vs. Build: Unlocking the right path for your training tech
Buy vs. Build: Unlocking the right path for your training techBuy vs. Build: Unlocking the right path for your training tech
Buy vs. Build: Unlocking the right path for your training tech
Rustici Software
 
How I solved production issues with OpenTelemetry
How I solved production issues with OpenTelemetryHow I solved production issues with OpenTelemetry
How I solved production issues with OpenTelemetry
Cees Bos
 
Autodesk Inventor Crack (2025) Latest
Autodesk Inventor    Crack (2025) LatestAutodesk Inventor    Crack (2025) Latest
Autodesk Inventor Crack (2025) Latest
Google
 
Unit Two - Java Architecture and OOPS
Unit Two  -   Java Architecture and OOPSUnit Two  -   Java Architecture and OOPS
Unit Two - Java Architecture and OOPS
Nabin Dhakal
 
wAIred_LearnWithOutAI_JCON_14052025.pptx
wAIred_LearnWithOutAI_JCON_14052025.pptxwAIred_LearnWithOutAI_JCON_14052025.pptx
wAIred_LearnWithOutAI_JCON_14052025.pptx
SimonedeGijt
 
Best HR and Payroll Software in Bangladesh - accordHRM
Best HR and Payroll Software in Bangladesh - accordHRMBest HR and Payroll Software in Bangladesh - accordHRM
Best HR and Payroll Software in Bangladesh - accordHRM
accordHRM
 
[gbgcpp] Let's get comfortable with concepts
[gbgcpp] Let's get comfortable with concepts[gbgcpp] Let's get comfortable with concepts
[gbgcpp] Let's get comfortable with concepts
Dimitrios Platis
 
Memory Management and Leaks in Postgres from pgext.day 2025
Memory Management and Leaks in Postgres from pgext.day 2025Memory Management and Leaks in Postgres from pgext.day 2025
Memory Management and Leaks in Postgres from pgext.day 2025
Phil Eaton
 
Digital Twins Software Service in Belfast
Digital Twins Software Service in BelfastDigital Twins Software Service in Belfast
Digital Twins Software Service in Belfast
julia smits
 

Large-Scale Data Science in Apache Spark 2.0

  • 1. Matei Zaharia @matei_zaharia Large-Scale Data Science in Apache Spark 2.0
  • 2. Why Large-Scale? More data = better models Faster iteration = better models Scale is the key tool of effective data science and AI
  • 3. Two Forms of Scale Hardware scalability • Distribute work onto parallel hardware • Utilize the hardware efficiently (e.g. fast, low-level code) User scalability • Write applications quickly Often at odds!
  • 4. What is Apache Spark? Designed to tackle both challenges • High-level APIs and libraries • Efficient execution via parallelism and compilation Largest open source project in big data • 1000+ contributors, 300+ packages, 3x user growth / year SQLStreaming ML Graph …
  • 5. Spark for Data Science Spark-specific libraries • DataFrames, ML Pipelines, SQL, GraphFrames • Parallelize common computations Integration with existing libraries • Call arbitrary Python / R / etc libraries at scale Both expanding in Apache Spark 2.x
  • 6. This Talk Structured APIs in Spark 2.0 Scaling deep learning Parallelizing traditional data science libraries
  • 7. Original Spark API Functional operations on collections of Java/Python objects (RDDs) + Expressive and concise - Hard to automatically optimize lines = spark.textFile(“hdfs://...”) // RDD[String] points = lines.map(lambda line: parsePoint(line)) // RDD[Point] points.filter(lambda p: p.x > 100).count()
  • 8. Structured APIs New APIs for data with a table-like schema • DataFrames (untyped), Datasets (typed), and SQL Optimized storage and computation • Binary storage based on schema (e.g. columnar) • Compute via SQL-like expressions that Spark can compile
  • 9. Structured API Example events = sc.read.json(“/logs”) stats = events.join(users) .groupBy(“loc”,“status”) .avg(“duration”) errors = stats.where( stats.status == “ERR”) DataFrame API Optimized Plan Specialized Code SCAN logs SCAN users JOIN AGG FILTER while(logs.hasNext) { e = logs.next if(e.status == “ERR”) { u = users.get(e.uid) key = (u.loc, e.status) sum(key) += e.duration count(key) += 1 } } ...
  • 10. Structured API Performance 0 2 4 6 8 10 RDD Scala RDD Python DataFrame Scala DataFrame Python DataFrame R DataFrame SQL Time for aggregation benchmark (s) Higher-level and easier to optimize
  • 11. Structured Streaming Incrementalize an existing DataFrame/Dataset query logs = ctx.read.format(“json”).open(“hdfs://logs”) logs.groupBy(“userid”, “hour”).avg(“latency”) .write.format(”parquet”) .save(“s3://...”) Example batch job:
  • 12. Structured Streaming Incrementalize an existing DataFrame/Dataset query logs = ctx.readStream.format(“json”).load(“hdfs://logs”) logs.groupBy(“userid”, “hour”).avg(“latency”) .writeStream.format(”parquet") .start(“s3://...”) Example as streaming:
  • 13. Structured APIs Elsewhere ML Pipelines on DataFrames • Pipeline API based on scikit- learn • Grid search, cross-validation, etc GraphFrames for graph analytics • Pattern matching à la Neo4J tokenizer = Tokenizer() tf = HashingTF(numFeatures=1000) lr = LogisticRegression() pipe = Pipeline([tokenizer, tf, lr]) model = pipe.fit(df) tokenizer TF LR modelDataFrame
  • 14. This Talk Structured APIs in Spark 2.0 Scaling deep learning Parallelizing traditional data science libraries
  • 15. Why Deep Learning on Spark? Scale out model application to large data • For transfer learning or model evaluation Scale out parameter search: one model per machine Distributed training: one model on multiple machines
  • 16. Deep Learning Libraries TensorFlow model eval on DataFrames, for serving or transfer learning Distributed model training on CPUs Run Caffe & TensorFlow on Spark data TensorFrames TensorFlowOnSpark BigDL
  • 17. This Talk Structured APIs in Spark 2.0 Scaling deep learning Parallelizing traditional data science libraries
  • 18. Parallelizing Existing Libraries Spark Python/R APIs let you scale out existing libraries • spark-sklearn for arbitrary scikit-learn models • SparkR dapply from sklearn import svm, datasets from spark_sklearn import GridSearchCV iris = datasets.load_iris() model = svm.SVC() params = { 'kernel': ['linear', 'rbf’], 'C': [1, 10] } gs = GridSearchCV(sc, model, params) gs.fit(iris.data, iris.target) github.com/databricks/spark-sklearn
  • 20. Coming Soon Native APIs for zero-copy data transfer into C libraries Streamlined installation in Python: pip install pyspark
  • 21. To Learn More See hundreds of talks on use cases at Spark Summit spark-summit.org . Try interactive Spark tutorials in Databricks Community Edition databricks.com/ce . June 5-8, San Francisco
  翻译: