The growing population of elders in the society calls for a new approach in care giving. By
inferring what activities elderly are performing in their houses it is possible to determine their
physical and cognitive capabilities. In this paper we show the potential of important
discriminative classifiers namely the Soft-Support Vector Machines (C-SVM), Conditional
Random Fields (CRF) and k-Nearest Neighbors (k-NN) for recognizing activities from sensor
patterns in a smart home environment. We address also the class imbalance problem in activity
recognition field which has been known to hinder the learning performance of classifiers. Cost
sensitive learning is attractive under most imbalanced circumstances, but it is difficult to
determine the precise misclassification costs in practice. We introduce a new criterion for
selecting the suitable cost parameter C of the C-SVM method. Through our evaluation on four
real world imbalanced activity datasets, we demonstrate that C-SVM based on our proposed
criterion outperforms the state-of-the-art discriminative methods in activity recognition.