SlideShare a Scribd company logo
DATA VIRTUALIZATION
APAC WEBINAR SERIES
Sessions Covering Key Data
Integration Challenges Solved
with Data Virtualization
How Data Virtualization Puts Enterprise Machine
Learning Programs into Production
Chris Day
Director, APAC Sales Engineering, Denodo
Sushant Kumar
Product Marketing Manager, Denodo
Agenda
1. What are Advanced Analytics?
2. The Data Challenge
3. The Rise of Logical Data Architectures
4. Tackling the Data Pipeline Problem
5. Customer Stories
6. Key Takeaways
7. Q&A
8. Next Steps
4
VentureBeat AI, July 2019
87% of data science projects never
make it into production.
5
Advanced Analytics & Machine Learning Exercises Need Data
Improving Patient
Outcomes
Data includes patient demographics,
family history, patient vitals, lab test
results, claims data etc.
Predictive Maintenance
Maintenance data logs, data coming in
from sensors – including temperature,
running time, power level duration etc.
Predicting Late Payment
Data includes company or individual
demographics, payment history,
customer support logs etc.
Preventing Frauds
Data includes the location where the
claim originated, time of the day,
claimant history and any recent adverse
events.
Reducing Customer Churn
Data includes customer demographics,
products purchased, products used, pat
transaction, company size, history,
revenue etc.
Logical Data Warehouse
8
Gartner, Adopt the Logical Data Warehouse Architecture to Meet Your Modern
Analytical Needs, May 2018
“When designed properly, Data Virtualization can speed data
integration, lower data latency, offer flexibility and reuse, and reduce
data sprawl across dispersed data sources. Due to its many benefits,
Data Virtualization is often the first step for organizations evolving a
traditional, repository-style data warehouse into a Logical Architecture”
9
Logical Data Warehouse Reference Architecture
10
Why A Logical Architecture Is Needed
ü The analytical technology landscape has shifted over time.
ü You need a flexible architecture that will allow you to embrace those shifts rather
than tie you down to a monolithic approach.
ü Only a logical architecture will easily accommodate such changes, and not a
physical architecture.
ü IT should be able to adopt newer technologies without impacting business users.
Tackling the Data Pipeline Problem
12
Typical Data Science Workflow
A typical workflow for a data scientist is:
1. Gather the requirements for the business problem
2. Identify useful data
§ Ingest data
3. Cleanse data into a useful format
4. Analyze data
5. Prepare input for your algorithms
6. Execute data science algorithms (ML, AI, etc.)
§ Iterate steps 2 to 6 until valuable insights are
produced
7. Visualize and share
Source:http://sudeep.co/data-science/Understanding-the-Data-Science-Lifecycle/
13
Where Does Your Time Go?
• 80% of time – Finding and
preparing the data
• 10% of time – Analysis
• 10% of time – Visualizing data
Source:http://sudeep.co/data-science/Understanding-the-Data-Science-Lifecycle/
14
Where Does Your Time Go?
A large amount of time and effort goes into tasks not intrinsically related to data science:
• Finding where the right data may be
• Getting access to the data
§ Bureaucracy
§ Understand access methods and technology (noSQL, REST APIs, etc.)
• Transforming data into a format easy to work with
• Combining data originally available in different sources and formats
• Profile and cleanse data to eliminate incomplete or inconsistent data points
15
Data Scientist Workflow
Identify useful
data
Modify datainto
auseful format
Analyzedata Executedata
science algorithms
(ML,AI, etc.)
Prepare for
MLalgorithm
16
Identify Useful Data
If the company has a virtual layer with a good coverage of
data sources, this task is greatly simplified.
§ A data virtualization tool like Denodo can offer
unified access to all data available in the company.
§ It abstracts the technologies underneath, offering a
standard SQL interface to query and manipulate.
To further simplify the challenge, Denodo offers a Data
Catalog to search, find and explore your data assets.
17
Data Scientist Workflow
Identify useful
data
Modify datainto
auseful format
Analyzedata Executedata
science algorithms
(ML,AI, etc.)
Prepare for
MLalgorithm
18
Data Virtualization offers the unique opportunity of
using standard SQL (joins, aggregations,
transformations, etc.) to access, manipulate and
analyze any data.
Cleansing and transformation steps can be easily
accomplished in SQL.
Its modeling capabilities enable the definition of views
that embed this logic to foster reusability.
Ingestion And Data Manipulation Tasks
Customer Story
20
Prologis Launches Data Analytics Program for Cost Optimization
Background
§ Create a single governed data access layer to create
reusable and consistent analytical assets that could be used
by the rest of the business teams to run their own analytics.
§ Save time for data scientists in finding , transforming and
analysing data sets without having to learn new skills and
create data models that could be refreshed on demand.
§ Efficiently maintain its new data architecture with minimum
downtime and configuration management.
Prologis is the largest industrial real estate
company in the world, serving 5000 customers
in over 20 countries and USD 87 billion in
assets under management.
21
Prologis Architecture Diagram
wc_monthly_occupancy_rpt_f wc_lease_amendment_d w_day_d wc_property_d
MARKET_AVAILABILITY_CURRENT MARKET_AVAILABILITY_FUTURE
Prologis
SnowFlake
API
Access
Informatica
Cloud
ShareHouse
ODBC JDBC
peoplesoft_gl_actuals yardi_unit_leasing p360_property
WAF
AWS Lambda APIs
22
Data Virtualization Benefits Experienced by Prologis
§ The analytics team was able to create business focussed subject areas with
consistent data sets that were 30% faster in speed to analytics.
§ Denodo made it possible for Prologis to quick start advanced analytics projects.
§ The Denodo platform’s deployment was as easy as a click of a button with
centralized configuration management. This simplified Prologis’s data architecture
and also helped bring down the overall maintenance cost.
23
Luke Slotwinski, VP, IT Data and Analytics at Prologis
The speed of business is faster than before. It is now critical
to be able to make decisions on a dime to pivot the business
in its needed direction. This is why Prologis went with the
Denodo Platform.
24
ü Denodo can play key role in the data science ecosystem to reduce data
exploration and analysis timeframes.
ü Extends and integrates with the capabilities of notebooks, Python, R, etc.
to improve the toolset of the data scientist.
ü Provides a modern “SQL-on-Anything” engine.
ü Can leverage Big Data technologies like Spark (as a data source, an
ingestion tool and for external processing) to efficiently work with large
data volumes.
ü New and expanded tools for data scientists and citizen analysts: “Apache
Zeppelin for Denodo” Notebook.
Data Virtualization Benefits for AI and Machine Learning
Projects
Product Demonstration
Chris Day
Director, APAC Sales Engineering, Denodo
26
Key Takeaways
ü Information architectures are getting more complex, more diverse, and more
distributed.
ü Traditional technologies and data replication don’t cut it anymore.
ü Data virtualization makes it quick and easy to expose data from multiple source to your
users.
ü Data virtualization provides a governance and management infrastructure required for
successful data management.
Q&A
Next Steps
29
bit.ly/2AouQLQ
Thanks!
www.denodo.com info@denodo.com
© Copyright Denodo Technologies. All rights reserved
Unless otherwise specified, no part of this PDF file may be reproduced or utilized in any for or by any means, electronic or mechanical, including photocopying and microfilm,
without prior the written authorization from Denodo Technologies.
Ad

More Related Content

What's hot (20)

Fast Data Strategy Houston Roadshow Presentation
Fast Data Strategy Houston Roadshow PresentationFast Data Strategy Houston Roadshow Presentation
Fast Data Strategy Houston Roadshow Presentation
Denodo
 
Accelerate Self-Service Analytics with Data Virtualization and Visualization
Accelerate Self-Service Analytics with Data Virtualization and VisualizationAccelerate Self-Service Analytics with Data Virtualization and Visualization
Accelerate Self-Service Analytics with Data Virtualization and Visualization
Denodo
 
Data Virtualization: An Essential Component of a Cloud Data Lake
Data Virtualization: An Essential Component of a Cloud Data LakeData Virtualization: An Essential Component of a Cloud Data Lake
Data Virtualization: An Essential Component of a Cloud Data Lake
Denodo
 
Empowering your Enterprise with a Self-Service Data Marketplace (EMEA)
Empowering your Enterprise with a Self-Service Data Marketplace (EMEA)Empowering your Enterprise with a Self-Service Data Marketplace (EMEA)
Empowering your Enterprise with a Self-Service Data Marketplace (EMEA)
Denodo
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Cloud Migration headache? Ease the pain with Data Virtualization! (EMEA)
Cloud Migration headache? Ease the pain with Data Virtualization! (EMEA)Cloud Migration headache? Ease the pain with Data Virtualization! (EMEA)
Cloud Migration headache? Ease the pain with Data Virtualization! (EMEA)
Denodo
 
Applying Big Data Superpowers to Healthcare
Applying Big Data Superpowers to HealthcareApplying Big Data Superpowers to Healthcare
Applying Big Data Superpowers to Healthcare
Paul Boal
 
Denodo Data Virtualization - IT Days in Luxembourg with Oktopus
Denodo Data Virtualization - IT Days in Luxembourg with OktopusDenodo Data Virtualization - IT Days in Luxembourg with Oktopus
Denodo Data Virtualization - IT Days in Luxembourg with Oktopus
Denodo
 
Logical Data Fabric: Maturing Implementation from Small to Big (APAC)
Logical Data Fabric: Maturing Implementation from Small to Big (APAC)Logical Data Fabric: Maturing Implementation from Small to Big (APAC)
Logical Data Fabric: Maturing Implementation from Small to Big (APAC)
Denodo
 
Data Lake Acceleration vs. Data Virtualization - What’s the difference?
Data Lake Acceleration vs. Data Virtualization - What’s the difference?Data Lake Acceleration vs. Data Virtualization - What’s the difference?
Data Lake Acceleration vs. Data Virtualization - What’s the difference?
Denodo
 
Solution Centric Architectural Presentation - Implementing a Logical Data War...
Solution Centric Architectural Presentation - Implementing a Logical Data War...Solution Centric Architectural Presentation - Implementing a Logical Data War...
Solution Centric Architectural Presentation - Implementing a Logical Data War...
Denodo
 
Accelerate Self-Service Analytics with Data Virtualization and Visualization
Accelerate Self-Service Analytics with Data Virtualization and VisualizationAccelerate Self-Service Analytics with Data Virtualization and Visualization
Accelerate Self-Service Analytics with Data Virtualization and Visualization
Denodo
 
Best Practices in the Cloud for Data Management (US)
Best Practices in the Cloud for Data Management (US)Best Practices in the Cloud for Data Management (US)
Best Practices in the Cloud for Data Management (US)
Denodo
 
Logical Data Warehouse and Data Lakes
Logical Data Warehouse and Data Lakes Logical Data Warehouse and Data Lakes
Logical Data Warehouse and Data Lakes
Denodo
 
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Denodo
 
Self Service Analytics enabled by Data Virtualization from Denodo
Self Service Analytics enabled by Data Virtualization from DenodoSelf Service Analytics enabled by Data Virtualization from Denodo
Self Service Analytics enabled by Data Virtualization from Denodo
Denodo
 
Multi-Cloud Integration with Data Virtualization (ASEAN)
Multi-Cloud Integration with Data Virtualization (ASEAN)Multi-Cloud Integration with Data Virtualization (ASEAN)
Multi-Cloud Integration with Data Virtualization (ASEAN)
Denodo
 
Data fabric and VMware
Data fabric and VMwareData fabric and VMware
Data fabric and VMware
VMware vFabric
 
Modern Data Management for Federal Modernization
Modern Data Management for Federal ModernizationModern Data Management for Federal Modernization
Modern Data Management for Federal Modernization
Denodo
 
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Denodo
 
Fast Data Strategy Houston Roadshow Presentation
Fast Data Strategy Houston Roadshow PresentationFast Data Strategy Houston Roadshow Presentation
Fast Data Strategy Houston Roadshow Presentation
Denodo
 
Accelerate Self-Service Analytics with Data Virtualization and Visualization
Accelerate Self-Service Analytics with Data Virtualization and VisualizationAccelerate Self-Service Analytics with Data Virtualization and Visualization
Accelerate Self-Service Analytics with Data Virtualization and Visualization
Denodo
 
Data Virtualization: An Essential Component of a Cloud Data Lake
Data Virtualization: An Essential Component of a Cloud Data LakeData Virtualization: An Essential Component of a Cloud Data Lake
Data Virtualization: An Essential Component of a Cloud Data Lake
Denodo
 
Empowering your Enterprise with a Self-Service Data Marketplace (EMEA)
Empowering your Enterprise with a Self-Service Data Marketplace (EMEA)Empowering your Enterprise with a Self-Service Data Marketplace (EMEA)
Empowering your Enterprise with a Self-Service Data Marketplace (EMEA)
Denodo
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Cloud Migration headache? Ease the pain with Data Virtualization! (EMEA)
Cloud Migration headache? Ease the pain with Data Virtualization! (EMEA)Cloud Migration headache? Ease the pain with Data Virtualization! (EMEA)
Cloud Migration headache? Ease the pain with Data Virtualization! (EMEA)
Denodo
 
Applying Big Data Superpowers to Healthcare
Applying Big Data Superpowers to HealthcareApplying Big Data Superpowers to Healthcare
Applying Big Data Superpowers to Healthcare
Paul Boal
 
Denodo Data Virtualization - IT Days in Luxembourg with Oktopus
Denodo Data Virtualization - IT Days in Luxembourg with OktopusDenodo Data Virtualization - IT Days in Luxembourg with Oktopus
Denodo Data Virtualization - IT Days in Luxembourg with Oktopus
Denodo
 
Logical Data Fabric: Maturing Implementation from Small to Big (APAC)
Logical Data Fabric: Maturing Implementation from Small to Big (APAC)Logical Data Fabric: Maturing Implementation from Small to Big (APAC)
Logical Data Fabric: Maturing Implementation from Small to Big (APAC)
Denodo
 
Data Lake Acceleration vs. Data Virtualization - What’s the difference?
Data Lake Acceleration vs. Data Virtualization - What’s the difference?Data Lake Acceleration vs. Data Virtualization - What’s the difference?
Data Lake Acceleration vs. Data Virtualization - What’s the difference?
Denodo
 
Solution Centric Architectural Presentation - Implementing a Logical Data War...
Solution Centric Architectural Presentation - Implementing a Logical Data War...Solution Centric Architectural Presentation - Implementing a Logical Data War...
Solution Centric Architectural Presentation - Implementing a Logical Data War...
Denodo
 
Accelerate Self-Service Analytics with Data Virtualization and Visualization
Accelerate Self-Service Analytics with Data Virtualization and VisualizationAccelerate Self-Service Analytics with Data Virtualization and Visualization
Accelerate Self-Service Analytics with Data Virtualization and Visualization
Denodo
 
Best Practices in the Cloud for Data Management (US)
Best Practices in the Cloud for Data Management (US)Best Practices in the Cloud for Data Management (US)
Best Practices in the Cloud for Data Management (US)
Denodo
 
Logical Data Warehouse and Data Lakes
Logical Data Warehouse and Data Lakes Logical Data Warehouse and Data Lakes
Logical Data Warehouse and Data Lakes
Denodo
 
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Denodo
 
Self Service Analytics enabled by Data Virtualization from Denodo
Self Service Analytics enabled by Data Virtualization from DenodoSelf Service Analytics enabled by Data Virtualization from Denodo
Self Service Analytics enabled by Data Virtualization from Denodo
Denodo
 
Multi-Cloud Integration with Data Virtualization (ASEAN)
Multi-Cloud Integration with Data Virtualization (ASEAN)Multi-Cloud Integration with Data Virtualization (ASEAN)
Multi-Cloud Integration with Data Virtualization (ASEAN)
Denodo
 
Data fabric and VMware
Data fabric and VMwareData fabric and VMware
Data fabric and VMware
VMware vFabric
 
Modern Data Management for Federal Modernization
Modern Data Management for Federal ModernizationModern Data Management for Federal Modernization
Modern Data Management for Federal Modernization
Denodo
 
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Denodo
 

Similar to How Data Virtualization Puts Machine Learning into Production (APAC) (20)

How Data Virtualization Puts Enterprise Machine Learning Programs into Produc...
How Data Virtualization Puts Enterprise Machine Learning Programs into Produc...How Data Virtualization Puts Enterprise Machine Learning Programs into Produc...
How Data Virtualization Puts Enterprise Machine Learning Programs into Produc...
Denodo
 
Advanced Analytics and Machine Learning with Data Virtualization (India)
Advanced Analytics and Machine Learning with Data Virtualization (India)Advanced Analytics and Machine Learning with Data Virtualization (India)
Advanced Analytics and Machine Learning with Data Virtualization (India)
Denodo
 
Quicker Insights and Sustainable Business Agility Powered By Data Virtualizat...
Quicker Insights and Sustainable Business Agility Powered By Data Virtualizat...Quicker Insights and Sustainable Business Agility Powered By Data Virtualizat...
Quicker Insights and Sustainable Business Agility Powered By Data Virtualizat...
Denodo
 
Why Your Data Science Architecture Should Include a Data Virtualization Tool ...
Why Your Data Science Architecture Should Include a Data Virtualization Tool ...Why Your Data Science Architecture Should Include a Data Virtualization Tool ...
Why Your Data Science Architecture Should Include a Data Virtualization Tool ...
Denodo
 
Advanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data VirtualizationAdvanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data Virtualization
Denodo
 
Advanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data VirtualizationAdvanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data Virtualization
Denodo
 
Ch1IntroductiontoDataScience.pptx
Ch1IntroductiontoDataScience.pptxCh1IntroductiontoDataScience.pptx
Ch1IntroductiontoDataScience.pptx
AbderrahmanABID2
 
2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf
2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf
2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf
AlexandreMacedo50
 
A Logical Architecture is Always a Flexible Architecture (ASEAN)
A Logical Architecture is Always a Flexible Architecture (ASEAN)A Logical Architecture is Always a Flexible Architecture (ASEAN)
A Logical Architecture is Always a Flexible Architecture (ASEAN)
Denodo
 
IRJET- Search Improvement using Digital Thread in Data Analytics
IRJET- Search Improvement using Digital Thread in Data AnalyticsIRJET- Search Improvement using Digital Thread in Data Analytics
IRJET- Search Improvement using Digital Thread in Data Analytics
IRJET Journal
 
Introduction to Modern Data Virtualization 2021 (APAC)
Introduction to Modern Data Virtualization 2021 (APAC)Introduction to Modern Data Virtualization 2021 (APAC)
Introduction to Modern Data Virtualization 2021 (APAC)
Denodo
 
Data Science- Basics.pptx
Data Science- Basics.pptxData Science- Basics.pptx
Data Science- Basics.pptx
RupaliKute3
 
The Evolving Role of the Data Engineer - Whitepaper | Qubole
The Evolving Role of the Data Engineer - Whitepaper | QuboleThe Evolving Role of the Data Engineer - Whitepaper | Qubole
The Evolving Role of the Data Engineer - Whitepaper | Qubole
Vasu S
 
Is your big data journey stalling? Take the Leap with Capgemini and Cloudera
Is your big data journey stalling? Take the Leap with Capgemini and ClouderaIs your big data journey stalling? Take the Leap with Capgemini and Cloudera
Is your big data journey stalling? Take the Leap with Capgemini and Cloudera
Cloudera, Inc.
 
Top 10 areas of expertise in data science
Top 10 areas of expertise in data scienceTop 10 areas of expertise in data science
Top 10 areas of expertise in data science
GlobalTechCouncil
 
Big Data Driven Solutions to Combat Covid' 19
Big Data Driven Solutions to Combat Covid' 19Big Data Driven Solutions to Combat Covid' 19
Big Data Driven Solutions to Combat Covid' 19
Prof.Balakrishnan S
 
pwc-data-mesh.pdf
pwc-data-mesh.pdfpwc-data-mesh.pdf
pwc-data-mesh.pdf
ssuser18927d
 
Data Engineer's Lunch #85: Designing a Modern Data Stack
Data Engineer's Lunch #85: Designing a Modern Data StackData Engineer's Lunch #85: Designing a Modern Data Stack
Data Engineer's Lunch #85: Designing a Modern Data Stack
Anant Corporation
 
Complete-SRS.doc
Complete-SRS.docComplete-SRS.doc
Complete-SRS.doc
jadhavpravin920
 
Data Democratization for Faster Decision-making and Business Agility (ASEAN)
Data Democratization for Faster Decision-making and Business Agility (ASEAN)Data Democratization for Faster Decision-making and Business Agility (ASEAN)
Data Democratization for Faster Decision-making and Business Agility (ASEAN)
Denodo
 
How Data Virtualization Puts Enterprise Machine Learning Programs into Produc...
How Data Virtualization Puts Enterprise Machine Learning Programs into Produc...How Data Virtualization Puts Enterprise Machine Learning Programs into Produc...
How Data Virtualization Puts Enterprise Machine Learning Programs into Produc...
Denodo
 
Advanced Analytics and Machine Learning with Data Virtualization (India)
Advanced Analytics and Machine Learning with Data Virtualization (India)Advanced Analytics and Machine Learning with Data Virtualization (India)
Advanced Analytics and Machine Learning with Data Virtualization (India)
Denodo
 
Quicker Insights and Sustainable Business Agility Powered By Data Virtualizat...
Quicker Insights and Sustainable Business Agility Powered By Data Virtualizat...Quicker Insights and Sustainable Business Agility Powered By Data Virtualizat...
Quicker Insights and Sustainable Business Agility Powered By Data Virtualizat...
Denodo
 
Why Your Data Science Architecture Should Include a Data Virtualization Tool ...
Why Your Data Science Architecture Should Include a Data Virtualization Tool ...Why Your Data Science Architecture Should Include a Data Virtualization Tool ...
Why Your Data Science Architecture Should Include a Data Virtualization Tool ...
Denodo
 
Advanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data VirtualizationAdvanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data Virtualization
Denodo
 
Advanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data VirtualizationAdvanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data Virtualization
Denodo
 
Ch1IntroductiontoDataScience.pptx
Ch1IntroductiontoDataScience.pptxCh1IntroductiontoDataScience.pptx
Ch1IntroductiontoDataScience.pptx
AbderrahmanABID2
 
2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf
2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf
2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf
AlexandreMacedo50
 
A Logical Architecture is Always a Flexible Architecture (ASEAN)
A Logical Architecture is Always a Flexible Architecture (ASEAN)A Logical Architecture is Always a Flexible Architecture (ASEAN)
A Logical Architecture is Always a Flexible Architecture (ASEAN)
Denodo
 
IRJET- Search Improvement using Digital Thread in Data Analytics
IRJET- Search Improvement using Digital Thread in Data AnalyticsIRJET- Search Improvement using Digital Thread in Data Analytics
IRJET- Search Improvement using Digital Thread in Data Analytics
IRJET Journal
 
Introduction to Modern Data Virtualization 2021 (APAC)
Introduction to Modern Data Virtualization 2021 (APAC)Introduction to Modern Data Virtualization 2021 (APAC)
Introduction to Modern Data Virtualization 2021 (APAC)
Denodo
 
Data Science- Basics.pptx
Data Science- Basics.pptxData Science- Basics.pptx
Data Science- Basics.pptx
RupaliKute3
 
The Evolving Role of the Data Engineer - Whitepaper | Qubole
The Evolving Role of the Data Engineer - Whitepaper | QuboleThe Evolving Role of the Data Engineer - Whitepaper | Qubole
The Evolving Role of the Data Engineer - Whitepaper | Qubole
Vasu S
 
Is your big data journey stalling? Take the Leap with Capgemini and Cloudera
Is your big data journey stalling? Take the Leap with Capgemini and ClouderaIs your big data journey stalling? Take the Leap with Capgemini and Cloudera
Is your big data journey stalling? Take the Leap with Capgemini and Cloudera
Cloudera, Inc.
 
Top 10 areas of expertise in data science
Top 10 areas of expertise in data scienceTop 10 areas of expertise in data science
Top 10 areas of expertise in data science
GlobalTechCouncil
 
Big Data Driven Solutions to Combat Covid' 19
Big Data Driven Solutions to Combat Covid' 19Big Data Driven Solutions to Combat Covid' 19
Big Data Driven Solutions to Combat Covid' 19
Prof.Balakrishnan S
 
Data Engineer's Lunch #85: Designing a Modern Data Stack
Data Engineer's Lunch #85: Designing a Modern Data StackData Engineer's Lunch #85: Designing a Modern Data Stack
Data Engineer's Lunch #85: Designing a Modern Data Stack
Anant Corporation
 
Data Democratization for Faster Decision-making and Business Agility (ASEAN)
Data Democratization for Faster Decision-making and Business Agility (ASEAN)Data Democratization for Faster Decision-making and Business Agility (ASEAN)
Data Democratization for Faster Decision-making and Business Agility (ASEAN)
Denodo
 
Ad

More from Denodo (20)

Enterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in DenodoEnterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in Denodo
Denodo
 
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps ApproachLunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Denodo
 
Achieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services LayerAchieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services Layer
Denodo
 
What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?
Denodo
 
Mastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business LandscapeMastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business Landscape
Denodo
 
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo LiteDenodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo
 
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Denodo
 
Drive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory ComplianceDrive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory Compliance
Denodo
 
Знакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данныхЗнакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данных
Denodo
 
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data FragmentationData Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Denodo
 
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me AnythingDenodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo
 
Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!
Denodo
 
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way ForwardIt’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
Denodo
 
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Denodo
 
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Denodo
 
How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?
Denodo
 
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit UnionsWebinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Denodo
 
Enabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usabilityEnabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usability
Denodo
 
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo
 
GenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidadesGenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidades
Denodo
 
Enterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in DenodoEnterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in Denodo
Denodo
 
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps ApproachLunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Denodo
 
Achieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services LayerAchieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services Layer
Denodo
 
What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?
Denodo
 
Mastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business LandscapeMastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business Landscape
Denodo
 
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo LiteDenodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo
 
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Denodo
 
Drive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory ComplianceDrive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory Compliance
Denodo
 
Знакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данныхЗнакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данных
Denodo
 
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data FragmentationData Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Denodo
 
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me AnythingDenodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo
 
Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!
Denodo
 
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way ForwardIt’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
Denodo
 
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Denodo
 
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Denodo
 
How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?
Denodo
 
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit UnionsWebinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Denodo
 
Enabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usabilityEnabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usability
Denodo
 
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo
 
GenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidadesGenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidades
Denodo
 
Ad

Recently uploaded (20)

Transforming health care with ai powered
Transforming health care with ai poweredTransforming health care with ai powered
Transforming health care with ai powered
gowthamarvj
 
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfj
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfjOral Malodor.pptx jsjshdhushehsidjjeiejdhfj
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfj
maitripatel5301
 
Multi-tenant Data Pipeline Orchestration
Multi-tenant Data Pipeline OrchestrationMulti-tenant Data Pipeline Orchestration
Multi-tenant Data Pipeline Orchestration
Romi Kuntsman
 
What is ETL? Difference between ETL and ELT?.pdf
What is ETL? Difference between ETL and ELT?.pdfWhat is ETL? Difference between ETL and ELT?.pdf
What is ETL? Difference between ETL and ELT?.pdf
SaikatBasu37
 
Process Mining at Deutsche Bank - Journey
Process Mining at Deutsche Bank - JourneyProcess Mining at Deutsche Bank - Journey
Process Mining at Deutsche Bank - Journey
Process mining Evangelist
 
Understanding Complex Development Processes
Understanding Complex Development ProcessesUnderstanding Complex Development Processes
Understanding Complex Development Processes
Process mining Evangelist
 
Fundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithmsFundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithms
priyaiyerkbcsc
 
How to Set Up Process Mining in a Decentralized Organization?
How to Set Up Process Mining in a Decentralized Organization?How to Set Up Process Mining in a Decentralized Organization?
How to Set Up Process Mining in a Decentralized Organization?
Process mining Evangelist
 
L1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptxL1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptx
38NoopurPatel
 
AI ------------------------------ W1L2.pptx
AI ------------------------------ W1L2.pptxAI ------------------------------ W1L2.pptx
AI ------------------------------ W1L2.pptx
AyeshaJalil6
 
Lagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdfLagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdf
benuju2016
 
report (maam dona subject).pptxhsgwiswhs
report (maam dona subject).pptxhsgwiswhsreport (maam dona subject).pptxhsgwiswhs
report (maam dona subject).pptxhsgwiswhs
AngelPinedaTaguinod
 
real illuminati Uganda agent 0782561496/0756664682
real illuminati Uganda agent 0782561496/0756664682real illuminati Uganda agent 0782561496/0756664682
real illuminati Uganda agent 0782561496/0756664682
way to join real illuminati Agent In Kampala Call/WhatsApp+256782561496/0756664682
 
RAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit FrameworkRAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit Framework
apanneer
 
Sets theories and applications that can used to imporve knowledge
Sets theories and applications that can used to imporve knowledgeSets theories and applications that can used to imporve knowledge
Sets theories and applications that can used to imporve knowledge
saumyasl2020
 
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
muhammed84essa
 
Voice Control robotic arm hggyghghgjgjhgjg
Voice Control robotic arm hggyghghgjgjhgjgVoice Control robotic arm hggyghghgjgjhgjg
Voice Control robotic arm hggyghghgjgjhgjg
4mg22ec401
 
Agricultural_regionalisation_in_India(Final).pptx
Agricultural_regionalisation_in_India(Final).pptxAgricultural_regionalisation_in_India(Final).pptx
Agricultural_regionalisation_in_India(Final).pptx
mostafaahammed38
 
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
bastakwyry
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
Transforming health care with ai powered
Transforming health care with ai poweredTransforming health care with ai powered
Transforming health care with ai powered
gowthamarvj
 
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfj
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfjOral Malodor.pptx jsjshdhushehsidjjeiejdhfj
Oral Malodor.pptx jsjshdhushehsidjjeiejdhfj
maitripatel5301
 
Multi-tenant Data Pipeline Orchestration
Multi-tenant Data Pipeline OrchestrationMulti-tenant Data Pipeline Orchestration
Multi-tenant Data Pipeline Orchestration
Romi Kuntsman
 
What is ETL? Difference between ETL and ELT?.pdf
What is ETL? Difference between ETL and ELT?.pdfWhat is ETL? Difference between ETL and ELT?.pdf
What is ETL? Difference between ETL and ELT?.pdf
SaikatBasu37
 
Fundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithmsFundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithms
priyaiyerkbcsc
 
How to Set Up Process Mining in a Decentralized Organization?
How to Set Up Process Mining in a Decentralized Organization?How to Set Up Process Mining in a Decentralized Organization?
How to Set Up Process Mining in a Decentralized Organization?
Process mining Evangelist
 
L1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptxL1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptx
38NoopurPatel
 
AI ------------------------------ W1L2.pptx
AI ------------------------------ W1L2.pptxAI ------------------------------ W1L2.pptx
AI ------------------------------ W1L2.pptx
AyeshaJalil6
 
Lagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdfLagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdf
benuju2016
 
report (maam dona subject).pptxhsgwiswhs
report (maam dona subject).pptxhsgwiswhsreport (maam dona subject).pptxhsgwiswhs
report (maam dona subject).pptxhsgwiswhs
AngelPinedaTaguinod
 
RAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit FrameworkRAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit Framework
apanneer
 
Sets theories and applications that can used to imporve knowledge
Sets theories and applications that can used to imporve knowledgeSets theories and applications that can used to imporve knowledge
Sets theories and applications that can used to imporve knowledge
saumyasl2020
 
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
muhammed84essa
 
Voice Control robotic arm hggyghghgjgjhgjg
Voice Control robotic arm hggyghghgjgjhgjgVoice Control robotic arm hggyghghgjgjhgjg
Voice Control robotic arm hggyghghgjgjhgjg
4mg22ec401
 
Agricultural_regionalisation_in_India(Final).pptx
Agricultural_regionalisation_in_India(Final).pptxAgricultural_regionalisation_in_India(Final).pptx
Agricultural_regionalisation_in_India(Final).pptx
mostafaahammed38
 
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
bastakwyry
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 

How Data Virtualization Puts Machine Learning into Production (APAC)

  • 1. DATA VIRTUALIZATION APAC WEBINAR SERIES Sessions Covering Key Data Integration Challenges Solved with Data Virtualization
  • 2. How Data Virtualization Puts Enterprise Machine Learning Programs into Production Chris Day Director, APAC Sales Engineering, Denodo Sushant Kumar Product Marketing Manager, Denodo
  • 3. Agenda 1. What are Advanced Analytics? 2. The Data Challenge 3. The Rise of Logical Data Architectures 4. Tackling the Data Pipeline Problem 5. Customer Stories 6. Key Takeaways 7. Q&A 8. Next Steps
  • 4. 4 VentureBeat AI, July 2019 87% of data science projects never make it into production.
  • 5. 5 Advanced Analytics & Machine Learning Exercises Need Data Improving Patient Outcomes Data includes patient demographics, family history, patient vitals, lab test results, claims data etc. Predictive Maintenance Maintenance data logs, data coming in from sensors – including temperature, running time, power level duration etc. Predicting Late Payment Data includes company or individual demographics, payment history, customer support logs etc. Preventing Frauds Data includes the location where the claim originated, time of the day, claimant history and any recent adverse events. Reducing Customer Churn Data includes customer demographics, products purchased, products used, pat transaction, company size, history, revenue etc.
  • 7. 8 Gartner, Adopt the Logical Data Warehouse Architecture to Meet Your Modern Analytical Needs, May 2018 “When designed properly, Data Virtualization can speed data integration, lower data latency, offer flexibility and reuse, and reduce data sprawl across dispersed data sources. Due to its many benefits, Data Virtualization is often the first step for organizations evolving a traditional, repository-style data warehouse into a Logical Architecture”
  • 8. 9 Logical Data Warehouse Reference Architecture
  • 9. 10 Why A Logical Architecture Is Needed ü The analytical technology landscape has shifted over time. ü You need a flexible architecture that will allow you to embrace those shifts rather than tie you down to a monolithic approach. ü Only a logical architecture will easily accommodate such changes, and not a physical architecture. ü IT should be able to adopt newer technologies without impacting business users.
  • 10. Tackling the Data Pipeline Problem
  • 11. 12 Typical Data Science Workflow A typical workflow for a data scientist is: 1. Gather the requirements for the business problem 2. Identify useful data § Ingest data 3. Cleanse data into a useful format 4. Analyze data 5. Prepare input for your algorithms 6. Execute data science algorithms (ML, AI, etc.) § Iterate steps 2 to 6 until valuable insights are produced 7. Visualize and share Source:http://sudeep.co/data-science/Understanding-the-Data-Science-Lifecycle/
  • 12. 13 Where Does Your Time Go? • 80% of time – Finding and preparing the data • 10% of time – Analysis • 10% of time – Visualizing data Source:http://sudeep.co/data-science/Understanding-the-Data-Science-Lifecycle/
  • 13. 14 Where Does Your Time Go? A large amount of time and effort goes into tasks not intrinsically related to data science: • Finding where the right data may be • Getting access to the data § Bureaucracy § Understand access methods and technology (noSQL, REST APIs, etc.) • Transforming data into a format easy to work with • Combining data originally available in different sources and formats • Profile and cleanse data to eliminate incomplete or inconsistent data points
  • 14. 15 Data Scientist Workflow Identify useful data Modify datainto auseful format Analyzedata Executedata science algorithms (ML,AI, etc.) Prepare for MLalgorithm
  • 15. 16 Identify Useful Data If the company has a virtual layer with a good coverage of data sources, this task is greatly simplified. § A data virtualization tool like Denodo can offer unified access to all data available in the company. § It abstracts the technologies underneath, offering a standard SQL interface to query and manipulate. To further simplify the challenge, Denodo offers a Data Catalog to search, find and explore your data assets.
  • 16. 17 Data Scientist Workflow Identify useful data Modify datainto auseful format Analyzedata Executedata science algorithms (ML,AI, etc.) Prepare for MLalgorithm
  • 17. 18 Data Virtualization offers the unique opportunity of using standard SQL (joins, aggregations, transformations, etc.) to access, manipulate and analyze any data. Cleansing and transformation steps can be easily accomplished in SQL. Its modeling capabilities enable the definition of views that embed this logic to foster reusability. Ingestion And Data Manipulation Tasks
  • 19. 20 Prologis Launches Data Analytics Program for Cost Optimization Background § Create a single governed data access layer to create reusable and consistent analytical assets that could be used by the rest of the business teams to run their own analytics. § Save time for data scientists in finding , transforming and analysing data sets without having to learn new skills and create data models that could be refreshed on demand. § Efficiently maintain its new data architecture with minimum downtime and configuration management. Prologis is the largest industrial real estate company in the world, serving 5000 customers in over 20 countries and USD 87 billion in assets under management.
  • 20. 21 Prologis Architecture Diagram wc_monthly_occupancy_rpt_f wc_lease_amendment_d w_day_d wc_property_d MARKET_AVAILABILITY_CURRENT MARKET_AVAILABILITY_FUTURE Prologis SnowFlake API Access Informatica Cloud ShareHouse ODBC JDBC peoplesoft_gl_actuals yardi_unit_leasing p360_property WAF AWS Lambda APIs
  • 21. 22 Data Virtualization Benefits Experienced by Prologis § The analytics team was able to create business focussed subject areas with consistent data sets that were 30% faster in speed to analytics. § Denodo made it possible for Prologis to quick start advanced analytics projects. § The Denodo platform’s deployment was as easy as a click of a button with centralized configuration management. This simplified Prologis’s data architecture and also helped bring down the overall maintenance cost.
  • 22. 23 Luke Slotwinski, VP, IT Data and Analytics at Prologis The speed of business is faster than before. It is now critical to be able to make decisions on a dime to pivot the business in its needed direction. This is why Prologis went with the Denodo Platform.
  • 23. 24 ü Denodo can play key role in the data science ecosystem to reduce data exploration and analysis timeframes. ü Extends and integrates with the capabilities of notebooks, Python, R, etc. to improve the toolset of the data scientist. ü Provides a modern “SQL-on-Anything” engine. ü Can leverage Big Data technologies like Spark (as a data source, an ingestion tool and for external processing) to efficiently work with large data volumes. ü New and expanded tools for data scientists and citizen analysts: “Apache Zeppelin for Denodo” Notebook. Data Virtualization Benefits for AI and Machine Learning Projects
  • 24. Product Demonstration Chris Day Director, APAC Sales Engineering, Denodo
  • 25. 26 Key Takeaways ü Information architectures are getting more complex, more diverse, and more distributed. ü Traditional technologies and data replication don’t cut it anymore. ü Data virtualization makes it quick and easy to expose data from multiple source to your users. ü Data virtualization provides a governance and management infrastructure required for successful data management.
  • 26. Q&A
  • 29. Thanks! www.denodo.com info@denodo.com © Copyright Denodo Technologies. All rights reserved Unless otherwise specified, no part of this PDF file may be reproduced or utilized in any for or by any means, electronic or mechanical, including photocopying and microfilm, without prior the written authorization from Denodo Technologies.
  翻译: