This document summarizes and compares several algorithms used for medical image segmentation, including thresholding, classifiers, Markov random field models, artificial neural networks, atlas-guided approaches, deformable models, and clustering analysis methods like k-means and fuzzy c-means. It provides details on the fuzzy c-means and k-means clustering algorithms, including their process and flowcharts. A new fuzzy k-c-means algorithm is proposed that combines fuzzy c-means and k-means clustering to improve segmentation time. The algorithms are tested on MRI brain images and their results are analyzed and compared based on time, iterations, and accuracy.