The semantic segmentation of events on emergency contexts involves the identification of previously defined events of interest. In this work, the focused semantic event is the presence of fire in videos. The literature presents several methods for automatic video fire detection, but these methods were built under assumptions, such as stationary cameras and controlled lightening conditions that are often in contrast to the videos acquired by hand-held devices. To fulfill this gap, we propose a fire detection method, called SPATFIRE. Our method innovates on three aspects: (1) it relies on a specifically tailored color model named Fire-like Pixel Detector able to improve the accuracy of fire detection, (2) it employs a new technique for motion compensation, diminishing the problems observed in videos captured with non-stationary cameras, and, (3) it defines a segmentation method able to identify, not only the presence of fire in a video, but also the segments in the video where fire occurs. We experimented our proposal on two video datasets with different characteristics and summarize the results to demonstrate the superior efficacy, in terms of true positives and negatives, as compared to state-of-the-art methods.