This document summarizes a research paper that proposes a new design for a median filter using quantum-dot cellular automata (QCA). It uses a majority logic algorithm and one-hot encoding. For an input matrix of 9 numbers represented as 4-bit values, each column is processed independently by majority gates to determine the median value in 0.5 clock cycles. The proposed architecture scales to larger bit sizes while maintaining a constant delay of 0.5 clock cycles. Simulation results show the 1-bit median filter design occupies 0.05 μm2 and the proposed approach achieves better speed performance compared to other parameters as the bit size increases.