Quantum-dot cellular automata is a modern computing paradigm, conceived in feature of nanometer
scale with high integration density, and significant low power. For the QCA technology, making these
high-density design means an increase in the complexity which in turn leads to growth in the number of faults. The defect model presented in this paper categorized into two types, which include single missing and additional cell considering for QCA fault. Proposed gates have been designed in the
QCA and verified. The proposed Fredkin gate design has been compared with an existing design,
and 43% and 70% improvement in cell count and area respectively are revealed. Also, the Toffoli
design in QCA which achieve some parameters such as cell complexity of 39, and the average fault tolerance of 53.5%. The polarization value for both single cells missing an addition cell missing has been studied to explain the logic signal strength effect physically. A QCA framework for the 3-input
Ex-OR, 2:1 multiplexer, Fredkin, and Toffoli gate for the fault problem in which reliability analysis based on Hardware description language for QCA devices (HDLQ) is discussed and verified on the fault pattern look-up table.