Digital Images are used in magazines, blogs, website, television and more. Digital image processing
techniques are used for feature selection, pattern extraction classification and retrieval requirements. Color, texture
and shape features are used in the image processing. Digital images processing also supports computer graphics
and computer vision domains. Scene text recognition is performed with two schemes. They are character
recognizer and binary character classifier models. A character recognizer is trained to predict the category of a
character in an image patch. A binary character classifier is trained for each character class to predict the existence
of this category in an image patch. Scene text recognition is performed on detected text regions. Pixel-based layout
analysis method is adopted to extract text regions and segment text characters in images. Text character
segmentation is carried out with color uniformity and horizontal alignment of text characters. Discriminative
character descriptor is designed by combining several feature detectors and descriptors. Histogram of Oriented
Gradients (HOG) is used to identify the character descriptors. Character structure is modeled at each character
class by designing stroke configuration maps. The scene text extraction scheme is also supports for smart mobile
devices. Text recognition methods are used with text understanding and text retrieval applications. The text
recognition scheme is enhanced with content based image retrieval process. The system is integrated with
additional representative and discriminative features for text structure modeling process. The system is enhanced to
perform text and word level recognition using lexicon analysis. The training process is included with word
database update task.