This document discusses various clustering techniques used in data mining. It begins by defining clustering as an unsupervised learning technique that groups similar objects together. It then discusses advantages of clustering such as quality improvement and reuse opportunities. Several clustering methods are described such as K-means clustering, which aims to partition observations into k clusters where each observation belongs to the cluster with the nearest mean. The document concludes by discussing advantages of K-means clustering such as its linear time complexity and its use for spherical cluster shapes.