This document discusses cancer data partitioning using clustering techniques. It begins with an introduction to clustering concepts and different clustering methods like k-means, hierarchical agglomerative clustering, and partitioning methods. It then reviews literature on clustering algorithms and ensemble methods applied to problems like speaker diarization and tumor clustering from gene expression data. The document analyzes issues with existing clustering methodology and proposes a new dynamic ensemble membership selection scheme to support data structure and complexity independent clustering for cancer data partitioning. The method combines partition around medoids clustering with an incremental semi-supervised cluster ensemble framework to improve healthcare data partitioning accuracy.