SlideShare a Scribd company logo
Apache Flink® Training
System Overview
2
A stream processor
with many applications
Streaming dataflow runtime
Apache Flink
1 year of Flink - code
April 2014 April 2015
Flink Community
0
20
40
60
80
100
120
Aug-10 Feb-11 Sep-11 Apr-12 Oct-12 May-13 Nov-13 Jun-14 Dec-14 Jul-15
#unique contributor ids by git commits
In top 5 of Apache's big
data projects after one year
in the Apache Software
Foundation
The Apache Way
 Flink is an Apache top-level
project
5
• Independent, non-profit organization
• Community-driven open source software development
approach
• Public communication and open to new contributors
What is Apache Flink?
6
Gelly
Table
ML
SAMOA
DataSet (Java/Scala/Python) DataStream (Java/Scala)
HadoopM/R
Local Remote Yarn Tez Embedded
Dataflow
Dataflow(WiP)
MRQL
Table
Cascading(WiP)
Streaming dataflow runtime
Native workload support
7
Flink
Streaming
topologies
Heavy
batch jobs
Machine Learning at scale
How can an engine natively support all these workloads?
And what does native mean?
E.g.: Non-native iterations
8
Step Step Step Step Step
Client
for (int i = 0; i < maxIterations; i++) {
// Execute MapReduce job
}
E.g.: Non-native streaming
9
stream
discretizer
Job Job Job Job
while (true) {
// get next few records
// issue batch job
}
Native workload support
10
Flink
Stream
processing
Batch
processing
Machine Learning at scale
How can an engine natively support all these workloads?
And what does "native" mean?
Graph Analysis
Flink Engine
1. Execute everything as streams
2. Iterative (cyclic) dataflows
3. Mutable state
4. Operate on managed memory
5. Special code paths for batch
11
State +
Computation
What is a Flink Program?
12
Gelly
Table
ML
SAMOA
DataSet (Java/Scala/Python) DataStream (Java/Scala)
HadoopM/R
Local Remote Yarn Tez Embedded
Dataflow
Dataflow(WiP)
MRQL
Table
Cascading(WiP) Streaming dataflow runtime
Flink stack
Basic API Concept
How do I write a Flink program?
1. Bootstrap sources
2. Apply operations
3. Output to source
14
Data
Stream
Operation
Data
Stream
Source Sink
Data
Set
Operation
Data
Set
Source Sink
Batch & Stream Processing
 DataStream API
15
Stock Feed
Name Price
Microsoft 124
Google 516
Apple 235
… …
Alert if
Microsoft
> 120
Write
event to
database
Sum every
10
seconds
Alert if
sum >
10000
Microsoft 124
Google 516
Apple 235
Microsoft 124
Google 516
Apple 235
b h
2 1
3 5
7 4
… …
Map Reduce
a
1
2
…
 DataSet API
Example: Map/Reduce paradigm
Example: Live Stock Feed
Streaming & Batch
16
Batch
finite
blocking or
pipelined
high
Streaming
infinite
pipelined
low
Input
Data transfer
Latency
Scaling out
17
Data
Set
Operation
Data
Set
Source Sink
Data
Set
Operation
Data
Set
Source SinkData
Set
Operation
Data
Set
Source SinkData
Set
Operation
Data
Set
Source SinkData
Set
Operation
Data
Set
Source SinkData
Set
Operation
Data
Set
Source SinkData
Set
Operation
Data
Set
Source SinkData
Set
Operation
Data
Set
Source Sink
Scaling up
18
Sources (selection)
Collection-based
 fromCollection
 fromElements
File-based
 TextInputFormat
 CsvInputFormat
Other
 SocketInputFormat
 KafkaInputFormat
 Databases
19
Sinks (selection)
File-based
 TextOutputFormat
 CsvOutputFormat
 PrintOutput
Others
 SocketOutputFormat
 KafkaOutputFormat
 Databases
20
Hadoop Integration
Out of the box
 Access HDFS
 Yarn Execution (covered later)
 Reuse data types (Writables)
With a thin wrapper
 Reuse Hadoop input and output formats
 Reuse functions like Map and Reduce
21
What’s the Lifecycle of a
Program?
22
Architecture Overview
 Client
 Master (Job Manager)
 Worker (Task Manager)
24
Client
Job Manager
Task
Manager
Task
Manager
Task
Manager
Client
 Optimize
 Construct job graph
 Pass job graph to job manager
 Retrieve job results
25
Job Manager
Client
case class Path (from: Long, to:
Long)
val tc = edges.iterate(10) {
paths: DataSet[Path] =>
val next = paths
.join(edges)
.where("to")
.equalTo("from") {
(path, edge) =>
Path(path.from, edge.to)
}
.union(paths)
.distinct()
next
}
Optimizer
Type
extraction
Data
Source
orders.tbl
Filter
Map
DataSourc
e
lineitem.tbl
Join
Hybrid Hash
build
HT
probe
hash-part [0] hash-part [0]
GroupRed
sort
forward
Job Manager
 Parallelization: Create Execution Graph
 Scheduling: Assign tasks to task managers
 State: Supervise the execution
26
Job Manager
Data
Source
orders.tbl
Filter
Map
DataSour
ce
lineitem.tbl
Join
Hybrid Hash
build
HT
prob
e
hash-part [0] hash-part [0]
GroupRed
sort
forwar
d
Task Manager
Task Manager
Task Manager
Task Manager
Data
Source
orders.tbl
Filter
Map
DataSour
ce
lineitem.tbl
Join
Hybrid Hash
build
HT
prob
e
hash-part [0] hash-part [0]
GroupRed
sort
forwar
d
Data
Source
orders.tbl
Filter
Map
DataSour
ce
lineitem.tbl
Join
Hybrid Hash
build
HT
prob
e
hash-part [0] hash-part [0]
GroupRed
sort
forwar
d
Data
Source
orders.tbl
Filter
Map
DataSour
ce
lineitem.tbl
Join
Hybrid Hash
build
HT
prob
e
hash-part [0] hash-part [0]
GroupRed
sort
forwar
d
Data
Source
orders.tbl
Filter
Map
DataSour
ce
lineitem.tbl
Join
Hybrid Hash
build
HT
prob
e
hash-part [0] hash-part [0]
GroupRed
sort
forwar
d
Task Manager
 Operations are split up into tasks depending
on the specified parallelism
 Each parallel instance of an operation runs in
a separate task slot
 The scheduler may run several tasks from
different operators in one task slot
27
Task Manager
S
l
o
t
Task ManagerTask Manager
S
l
o
t
S
l
o
t
Execution Setups
28
Ways to Run a Flink Program
29
Gelly
Table
ML
SAMOA
DataSet (Java/Scala/Python) DataStream (Java/Scala)
HadoopM/R
Local Remote Yarn Tez Embedded
Dataflow
Dataflow(WiP)
MRQL
Table
Cascading(WiP) Streaming dataflow runtime
Local Execution
 Starts local Flink cluster
 All processes run in the
same JVM
 Behaves just like a
regular Cluster
 Very useful for developing
and debugging
30
Job Manager
Task
Manager
Task
Manager
Task
Manager
Task
Manager
JVM
Embedded Execution
 Runs operators on simple Java
collections
 Lower overhead
 Does not use memory management
 Useful for testing and debugging
31
Remote Execution
 Submit a Job
remotely
 Monitor the status
of a job
32
Client Job Manager
Cluster
Task
Manager
Task
Manager
Task
Manager
Task
Manager
Submit job
YARN Execution
 Multi-user scenario
 Resource sharing
 Uses YARN
containers to run a
Flink cluster
 Easy to setup
33
Client
Node Manager
Job Manager
YARN Cluster
Resource Manager
Node Manager
Task
Manager
Node Manager
Task
Manager
Node Manager
Other
Application
Execution
 Leverages Apache Tez’s runtime
 Built on top of YARN
 Good YARN citizen
 Fast path to elastic deployments
 Slower than native Flink
34
Flink compared to other
projects
35
Batch & Streaming projects
Batch only
Streaming only
Hybrid
36
Batch comparison
37
API low-level high-level high-level
Data Transfer batch batch pipelined & batch
Memory
Management
disk-based JVM-managed Active managed
Iterations
file system
cached
in-memory
cached
streamed
Fault tolerance task level task level job level
Good at massive scale out data exploration
heavy backend &
iterative jobs
Libraries many external built-in & external
evolving built-in &
external
Streaming comparison
38
Streaming “true” mini batches “true”
API low-level high-level high-level
Fault tolerance tuple-level ACKs RDD-based (lineage) coarse checkpointing
State not built-in external internal
Exactly once at least once exactly once exactly once
Windowing not built-in restricted flexible
Latency low medium low
Throughput medium high high
Thank you for listening!
39
Ad

More Related Content

What's hot (20)

Stream processing with Apache Flink (Timo Walther - Ververica)
Stream processing with Apache Flink (Timo Walther - Ververica)Stream processing with Apache Flink (Timo Walther - Ververica)
Stream processing with Apache Flink (Timo Walther - Ververica)
KafkaZone
 
ksqlDB - Stream Processing simplified!
ksqlDB - Stream Processing simplified!ksqlDB - Stream Processing simplified!
ksqlDB - Stream Processing simplified!
Guido Schmutz
 
Apache Flink internals
Apache Flink internalsApache Flink internals
Apache Flink internals
Kostas Tzoumas
 
Kafka replication apachecon_2013
Kafka replication apachecon_2013Kafka replication apachecon_2013
Kafka replication apachecon_2013
Jun Rao
 
Parquet performance tuning: the missing guide
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue
 
Introducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes OperatorIntroducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes Operator
Flink Forward
 
Kafka Retry and DLQ
Kafka Retry and DLQKafka Retry and DLQ
Kafka Retry and DLQ
George Teo
 
Apache Flink 101 - the rise of stream processing and beyond
Apache Flink 101 - the rise of stream processing and beyondApache Flink 101 - the rise of stream processing and beyond
Apache Flink 101 - the rise of stream processing and beyond
Bowen Li
 
Kafka Cluster Federation at Uber (Yupeng Fui & Xiaoman Dong, Uber) Kafka Summ...
Kafka Cluster Federation at Uber (Yupeng Fui & Xiaoman Dong, Uber) Kafka Summ...Kafka Cluster Federation at Uber (Yupeng Fui & Xiaoman Dong, Uber) Kafka Summ...
Kafka Cluster Federation at Uber (Yupeng Fui & Xiaoman Dong, Uber) Kafka Summ...
confluent
 
Introduction To Flink
Introduction To FlinkIntroduction To Flink
Introduction To Flink
Knoldus Inc.
 
Flink powered stream processing platform at Pinterest
Flink powered stream processing platform at PinterestFlink powered stream processing platform at Pinterest
Flink powered stream processing platform at Pinterest
Flink Forward
 
Kafka 101
Kafka 101Kafka 101
Kafka 101
Aparna Pillai
 
kafka
kafkakafka
kafka
Amikam Snir
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
Alexey Grishchenko
 
Autoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive ModeAutoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive Mode
Flink Forward
 
From cache to in-memory data grid. Introduction to Hazelcast.
From cache to in-memory data grid. Introduction to Hazelcast.From cache to in-memory data grid. Introduction to Hazelcast.
From cache to in-memory data grid. Introduction to Hazelcast.
Taras Matyashovsky
 
Apache Arrow Flight: A New Gold Standard for Data Transport
Apache Arrow Flight: A New Gold Standard for Data TransportApache Arrow Flight: A New Gold Standard for Data Transport
Apache Arrow Flight: A New Gold Standard for Data Transport
Wes McKinney
 
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Fine Tuning and Enhancing Performance of Apache Spark JobsFine Tuning and Enhancing Performance of Apache Spark Jobs
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Databricks
 
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Flink Forward
 
Introduction to Apache ZooKeeper
Introduction to Apache ZooKeeperIntroduction to Apache ZooKeeper
Introduction to Apache ZooKeeper
Saurav Haloi
 
Stream processing with Apache Flink (Timo Walther - Ververica)
Stream processing with Apache Flink (Timo Walther - Ververica)Stream processing with Apache Flink (Timo Walther - Ververica)
Stream processing with Apache Flink (Timo Walther - Ververica)
KafkaZone
 
ksqlDB - Stream Processing simplified!
ksqlDB - Stream Processing simplified!ksqlDB - Stream Processing simplified!
ksqlDB - Stream Processing simplified!
Guido Schmutz
 
Apache Flink internals
Apache Flink internalsApache Flink internals
Apache Flink internals
Kostas Tzoumas
 
Kafka replication apachecon_2013
Kafka replication apachecon_2013Kafka replication apachecon_2013
Kafka replication apachecon_2013
Jun Rao
 
Parquet performance tuning: the missing guide
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue
 
Introducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes OperatorIntroducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes Operator
Flink Forward
 
Kafka Retry and DLQ
Kafka Retry and DLQKafka Retry and DLQ
Kafka Retry and DLQ
George Teo
 
Apache Flink 101 - the rise of stream processing and beyond
Apache Flink 101 - the rise of stream processing and beyondApache Flink 101 - the rise of stream processing and beyond
Apache Flink 101 - the rise of stream processing and beyond
Bowen Li
 
Kafka Cluster Federation at Uber (Yupeng Fui & Xiaoman Dong, Uber) Kafka Summ...
Kafka Cluster Federation at Uber (Yupeng Fui & Xiaoman Dong, Uber) Kafka Summ...Kafka Cluster Federation at Uber (Yupeng Fui & Xiaoman Dong, Uber) Kafka Summ...
Kafka Cluster Federation at Uber (Yupeng Fui & Xiaoman Dong, Uber) Kafka Summ...
confluent
 
Introduction To Flink
Introduction To FlinkIntroduction To Flink
Introduction To Flink
Knoldus Inc.
 
Flink powered stream processing platform at Pinterest
Flink powered stream processing platform at PinterestFlink powered stream processing platform at Pinterest
Flink powered stream processing platform at Pinterest
Flink Forward
 
Autoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive ModeAutoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive Mode
Flink Forward
 
From cache to in-memory data grid. Introduction to Hazelcast.
From cache to in-memory data grid. Introduction to Hazelcast.From cache to in-memory data grid. Introduction to Hazelcast.
From cache to in-memory data grid. Introduction to Hazelcast.
Taras Matyashovsky
 
Apache Arrow Flight: A New Gold Standard for Data Transport
Apache Arrow Flight: A New Gold Standard for Data TransportApache Arrow Flight: A New Gold Standard for Data Transport
Apache Arrow Flight: A New Gold Standard for Data Transport
Wes McKinney
 
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Fine Tuning and Enhancing Performance of Apache Spark JobsFine Tuning and Enhancing Performance of Apache Spark Jobs
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Databricks
 
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Flink Forward
 
Introduction to Apache ZooKeeper
Introduction to Apache ZooKeeperIntroduction to Apache ZooKeeper
Introduction to Apache ZooKeeper
Saurav Haloi
 

Viewers also liked (20)

Vasia Kalavri – Training: Gelly School
Vasia Kalavri – Training: Gelly School Vasia Kalavri – Training: Gelly School
Vasia Kalavri – Training: Gelly School
Flink Forward
 
Mikio Braun – Data flow vs. procedural programming
Mikio Braun – Data flow vs. procedural programming Mikio Braun – Data flow vs. procedural programming
Mikio Braun – Data flow vs. procedural programming
Flink Forward
 
Moon soo Lee – Data Science Lifecycle with Apache Flink and Apache Zeppelin
Moon soo Lee – Data Science Lifecycle with Apache Flink and Apache ZeppelinMoon soo Lee – Data Science Lifecycle with Apache Flink and Apache Zeppelin
Moon soo Lee – Data Science Lifecycle with Apache Flink and Apache Zeppelin
Flink Forward
 
Marc Schwering – Using Flink with MongoDB to enhance relevancy in personaliza...
Marc Schwering – Using Flink with MongoDB to enhance relevancy in personaliza...Marc Schwering – Using Flink with MongoDB to enhance relevancy in personaliza...
Marc Schwering – Using Flink with MongoDB to enhance relevancy in personaliza...
Flink Forward
 
Michael Häusler – Everyday flink
Michael Häusler – Everyday flinkMichael Häusler – Everyday flink
Michael Häusler – Everyday flink
Flink Forward
 
Apache Flink Training: DataStream API Part 1 Basic
 Apache Flink Training: DataStream API Part 1 Basic Apache Flink Training: DataStream API Part 1 Basic
Apache Flink Training: DataStream API Part 1 Basic
Flink Forward
 
Matthias J. Sax – A Tale of Squirrels and Storms
Matthias J. Sax – A Tale of Squirrels and StormsMatthias J. Sax – A Tale of Squirrels and Storms
Matthias J. Sax – A Tale of Squirrels and Storms
Flink Forward
 
Jim Dowling – Interactive Flink analytics with HopsWorks and Zeppelin
Jim Dowling – Interactive Flink analytics with HopsWorks and ZeppelinJim Dowling – Interactive Flink analytics with HopsWorks and Zeppelin
Jim Dowling – Interactive Flink analytics with HopsWorks and Zeppelin
Flink Forward
 
Fabian Hueske – Juggling with Bits and Bytes
Fabian Hueske – Juggling with Bits and BytesFabian Hueske – Juggling with Bits and Bytes
Fabian Hueske – Juggling with Bits and Bytes
Flink Forward
 
Simon Laws – Apache Flink Cluster Deployment on Docker and Docker-Compose
Simon Laws – Apache Flink Cluster Deployment on Docker and Docker-ComposeSimon Laws – Apache Flink Cluster Deployment on Docker and Docker-Compose
Simon Laws – Apache Flink Cluster Deployment on Docker and Docker-Compose
Flink Forward
 
Fabian Hueske – Cascading on Flink
Fabian Hueske – Cascading on FlinkFabian Hueske – Cascading on Flink
Fabian Hueske – Cascading on Flink
Flink Forward
 
Sebastian Schelter – Distributed Machine Learing with the Samsara DSL
Sebastian Schelter – Distributed Machine Learing with the Samsara DSLSebastian Schelter – Distributed Machine Learing with the Samsara DSL
Sebastian Schelter – Distributed Machine Learing with the Samsara DSL
Flink Forward
 
S. Bartoli & F. Pompermaier – A Semantic Big Data Companion
S. Bartoli & F. Pompermaier – A Semantic Big Data CompanionS. Bartoli & F. Pompermaier – A Semantic Big Data Companion
S. Bartoli & F. Pompermaier – A Semantic Big Data Companion
Flink Forward
 
Kamal Hakimzadeh – Reproducible Distributed Experiments
Kamal Hakimzadeh – Reproducible Distributed ExperimentsKamal Hakimzadeh – Reproducible Distributed Experiments
Kamal Hakimzadeh – Reproducible Distributed Experiments
Flink Forward
 
Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)
Stephan Ewen
 
Assaf Araki – Real Time Analytics at Scale
Assaf Araki – Real Time Analytics at ScaleAssaf Araki – Real Time Analytics at Scale
Assaf Araki – Real Time Analytics at Scale
Flink Forward
 
Anwar Rizal – Streaming & Parallel Decision Tree in Flink
Anwar Rizal – Streaming & Parallel Decision Tree in FlinkAnwar Rizal – Streaming & Parallel Decision Tree in Flink
Anwar Rizal – Streaming & Parallel Decision Tree in Flink
Flink Forward
 
Till Rohrmann – Fault Tolerance and Job Recovery in Apache Flink
Till Rohrmann – Fault Tolerance and Job Recovery in Apache FlinkTill Rohrmann – Fault Tolerance and Job Recovery in Apache Flink
Till Rohrmann – Fault Tolerance and Job Recovery in Apache Flink
Flink Forward
 
Apache Flink Training: DataStream API Part 2 Advanced
Apache Flink Training: DataStream API Part 2 Advanced Apache Flink Training: DataStream API Part 2 Advanced
Apache Flink Training: DataStream API Part 2 Advanced
Flink Forward
 
Apache Flink - Hadoop MapReduce Compatibility
Apache Flink - Hadoop MapReduce CompatibilityApache Flink - Hadoop MapReduce Compatibility
Apache Flink - Hadoop MapReduce Compatibility
Fabian Hueske
 
Vasia Kalavri – Training: Gelly School
Vasia Kalavri – Training: Gelly School Vasia Kalavri – Training: Gelly School
Vasia Kalavri – Training: Gelly School
Flink Forward
 
Mikio Braun – Data flow vs. procedural programming
Mikio Braun – Data flow vs. procedural programming Mikio Braun – Data flow vs. procedural programming
Mikio Braun – Data flow vs. procedural programming
Flink Forward
 
Moon soo Lee – Data Science Lifecycle with Apache Flink and Apache Zeppelin
Moon soo Lee – Data Science Lifecycle with Apache Flink and Apache ZeppelinMoon soo Lee – Data Science Lifecycle with Apache Flink and Apache Zeppelin
Moon soo Lee – Data Science Lifecycle with Apache Flink and Apache Zeppelin
Flink Forward
 
Marc Schwering – Using Flink with MongoDB to enhance relevancy in personaliza...
Marc Schwering – Using Flink with MongoDB to enhance relevancy in personaliza...Marc Schwering – Using Flink with MongoDB to enhance relevancy in personaliza...
Marc Schwering – Using Flink with MongoDB to enhance relevancy in personaliza...
Flink Forward
 
Michael Häusler – Everyday flink
Michael Häusler – Everyday flinkMichael Häusler – Everyday flink
Michael Häusler – Everyday flink
Flink Forward
 
Apache Flink Training: DataStream API Part 1 Basic
 Apache Flink Training: DataStream API Part 1 Basic Apache Flink Training: DataStream API Part 1 Basic
Apache Flink Training: DataStream API Part 1 Basic
Flink Forward
 
Matthias J. Sax – A Tale of Squirrels and Storms
Matthias J. Sax – A Tale of Squirrels and StormsMatthias J. Sax – A Tale of Squirrels and Storms
Matthias J. Sax – A Tale of Squirrels and Storms
Flink Forward
 
Jim Dowling – Interactive Flink analytics with HopsWorks and Zeppelin
Jim Dowling – Interactive Flink analytics with HopsWorks and ZeppelinJim Dowling – Interactive Flink analytics with HopsWorks and Zeppelin
Jim Dowling – Interactive Flink analytics with HopsWorks and Zeppelin
Flink Forward
 
Fabian Hueske – Juggling with Bits and Bytes
Fabian Hueske – Juggling with Bits and BytesFabian Hueske – Juggling with Bits and Bytes
Fabian Hueske – Juggling with Bits and Bytes
Flink Forward
 
Simon Laws – Apache Flink Cluster Deployment on Docker and Docker-Compose
Simon Laws – Apache Flink Cluster Deployment on Docker and Docker-ComposeSimon Laws – Apache Flink Cluster Deployment on Docker and Docker-Compose
Simon Laws – Apache Flink Cluster Deployment on Docker and Docker-Compose
Flink Forward
 
Fabian Hueske – Cascading on Flink
Fabian Hueske – Cascading on FlinkFabian Hueske – Cascading on Flink
Fabian Hueske – Cascading on Flink
Flink Forward
 
Sebastian Schelter – Distributed Machine Learing with the Samsara DSL
Sebastian Schelter – Distributed Machine Learing with the Samsara DSLSebastian Schelter – Distributed Machine Learing with the Samsara DSL
Sebastian Schelter – Distributed Machine Learing with the Samsara DSL
Flink Forward
 
S. Bartoli & F. Pompermaier – A Semantic Big Data Companion
S. Bartoli & F. Pompermaier – A Semantic Big Data CompanionS. Bartoli & F. Pompermaier – A Semantic Big Data Companion
S. Bartoli & F. Pompermaier – A Semantic Big Data Companion
Flink Forward
 
Kamal Hakimzadeh – Reproducible Distributed Experiments
Kamal Hakimzadeh – Reproducible Distributed ExperimentsKamal Hakimzadeh – Reproducible Distributed Experiments
Kamal Hakimzadeh – Reproducible Distributed Experiments
Flink Forward
 
Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)
Stephan Ewen
 
Assaf Araki – Real Time Analytics at Scale
Assaf Araki – Real Time Analytics at ScaleAssaf Araki – Real Time Analytics at Scale
Assaf Araki – Real Time Analytics at Scale
Flink Forward
 
Anwar Rizal – Streaming & Parallel Decision Tree in Flink
Anwar Rizal – Streaming & Parallel Decision Tree in FlinkAnwar Rizal – Streaming & Parallel Decision Tree in Flink
Anwar Rizal – Streaming & Parallel Decision Tree in Flink
Flink Forward
 
Till Rohrmann – Fault Tolerance and Job Recovery in Apache Flink
Till Rohrmann – Fault Tolerance and Job Recovery in Apache FlinkTill Rohrmann – Fault Tolerance and Job Recovery in Apache Flink
Till Rohrmann – Fault Tolerance and Job Recovery in Apache Flink
Flink Forward
 
Apache Flink Training: DataStream API Part 2 Advanced
Apache Flink Training: DataStream API Part 2 Advanced Apache Flink Training: DataStream API Part 2 Advanced
Apache Flink Training: DataStream API Part 2 Advanced
Flink Forward
 
Apache Flink - Hadoop MapReduce Compatibility
Apache Flink - Hadoop MapReduce CompatibilityApache Flink - Hadoop MapReduce Compatibility
Apache Flink - Hadoop MapReduce Compatibility
Fabian Hueske
 
Ad

Similar to Apache Flink Training: System Overview (20)

Apache Flink@ Strata & Hadoop World London
Apache Flink@ Strata & Hadoop World LondonApache Flink@ Strata & Hadoop World London
Apache Flink@ Strata & Hadoop World London
Stephan Ewen
 
Introduction to Apache Flink at Vienna Meet Up
Introduction to Apache Flink at Vienna Meet UpIntroduction to Apache Flink at Vienna Meet Up
Introduction to Apache Flink at Vienna Meet Up
Stefan Papp
 
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Robert Metzger
 
Apache Flink: Past, Present and Future
Apache Flink: Past, Present and FutureApache Flink: Past, Present and Future
Apache Flink: Past, Present and Future
Gyula Fóra
 
Flink history, roadmap and vision
Flink history, roadmap and visionFlink history, roadmap and vision
Flink history, roadmap and vision
Stephan Ewen
 
K. Tzoumas & S. Ewen – Flink Forward Keynote
K. Tzoumas & S. Ewen – Flink Forward KeynoteK. Tzoumas & S. Ewen – Flink Forward Keynote
K. Tzoumas & S. Ewen – Flink Forward Keynote
Flink Forward
 
Flink internals web
Flink internals web Flink internals web
Flink internals web
Kostas Tzoumas
 
Near real-time anomaly detection at Lyft
Near real-time anomaly detection at LyftNear real-time anomaly detection at Lyft
Near real-time anomaly detection at Lyft
markgrover
 
Apache Flink - Overview and Use cases of a Distributed Dataflow System (at pr...
Apache Flink - Overview and Use cases of a Distributed Dataflow System (at pr...Apache Flink - Overview and Use cases of a Distributed Dataflow System (at pr...
Apache Flink - Overview and Use cases of a Distributed Dataflow System (at pr...
Stephan Ewen
 
Unified batch and stream processing with Flink @ Big Data Beers Berlin May 2015
Unified batch and stream processing with Flink @ Big Data Beers Berlin May 2015Unified batch and stream processing with Flink @ Big Data Beers Berlin May 2015
Unified batch and stream processing with Flink @ Big Data Beers Berlin May 2015
Robert Metzger
 
Why apache Flink is the 4G of Big Data Analytics Frameworks
Why apache Flink is the 4G of Big Data Analytics FrameworksWhy apache Flink is the 4G of Big Data Analytics Frameworks
Why apache Flink is the 4G of Big Data Analytics Frameworks
Slim Baltagi
 
Robust stream processing with Apache Flink
Robust stream processing with Apache FlinkRobust stream processing with Apache Flink
Robust stream processing with Apache Flink
Aljoscha Krettek
 
Building and deploying LLM applications with Apache Airflow
Building and deploying LLM applications with Apache AirflowBuilding and deploying LLM applications with Apache Airflow
Building and deploying LLM applications with Apache Airflow
Kaxil Naik
 
Ufuc Celebi – Stream & Batch Processing in one System
Ufuc Celebi – Stream & Batch Processing in one SystemUfuc Celebi – Stream & Batch Processing in one System
Ufuc Celebi – Stream & Batch Processing in one System
Flink Forward
 
Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019
Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019
Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019
Thomas Weise
 
Apache Flink(tm) - A Next-Generation Stream Processor
Apache Flink(tm) - A Next-Generation Stream ProcessorApache Flink(tm) - A Next-Generation Stream Processor
Apache Flink(tm) - A Next-Generation Stream Processor
Aljoscha Krettek
 
Data Analysis With Apache Flink
Data Analysis With Apache FlinkData Analysis With Apache Flink
Data Analysis With Apache Flink
DataWorks Summit
 
Data Analysis with Apache Flink (Hadoop Summit, 2015)
Data Analysis with Apache Flink (Hadoop Summit, 2015)Data Analysis with Apache Flink (Hadoop Summit, 2015)
Data Analysis with Apache Flink (Hadoop Summit, 2015)
Aljoscha Krettek
 
Apache Flink Training Workshop @ HadoopCon2016 - #1 System Overview
Apache Flink Training Workshop @ HadoopCon2016 - #1 System OverviewApache Flink Training Workshop @ HadoopCon2016 - #1 System Overview
Apache Flink Training Workshop @ HadoopCon2016 - #1 System Overview
Apache Flink Taiwan User Group
 
Apache Flink Overview at SF Spark and Friends
Apache Flink Overview at SF Spark and FriendsApache Flink Overview at SF Spark and Friends
Apache Flink Overview at SF Spark and Friends
Stephan Ewen
 
Apache Flink@ Strata & Hadoop World London
Apache Flink@ Strata & Hadoop World LondonApache Flink@ Strata & Hadoop World London
Apache Flink@ Strata & Hadoop World London
Stephan Ewen
 
Introduction to Apache Flink at Vienna Meet Up
Introduction to Apache Flink at Vienna Meet UpIntroduction to Apache Flink at Vienna Meet Up
Introduction to Apache Flink at Vienna Meet Up
Stefan Papp
 
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Robert Metzger
 
Apache Flink: Past, Present and Future
Apache Flink: Past, Present and FutureApache Flink: Past, Present and Future
Apache Flink: Past, Present and Future
Gyula Fóra
 
Flink history, roadmap and vision
Flink history, roadmap and visionFlink history, roadmap and vision
Flink history, roadmap and vision
Stephan Ewen
 
K. Tzoumas & S. Ewen – Flink Forward Keynote
K. Tzoumas & S. Ewen – Flink Forward KeynoteK. Tzoumas & S. Ewen – Flink Forward Keynote
K. Tzoumas & S. Ewen – Flink Forward Keynote
Flink Forward
 
Near real-time anomaly detection at Lyft
Near real-time anomaly detection at LyftNear real-time anomaly detection at Lyft
Near real-time anomaly detection at Lyft
markgrover
 
Apache Flink - Overview and Use cases of a Distributed Dataflow System (at pr...
Apache Flink - Overview and Use cases of a Distributed Dataflow System (at pr...Apache Flink - Overview and Use cases of a Distributed Dataflow System (at pr...
Apache Flink - Overview and Use cases of a Distributed Dataflow System (at pr...
Stephan Ewen
 
Unified batch and stream processing with Flink @ Big Data Beers Berlin May 2015
Unified batch and stream processing with Flink @ Big Data Beers Berlin May 2015Unified batch and stream processing with Flink @ Big Data Beers Berlin May 2015
Unified batch and stream processing with Flink @ Big Data Beers Berlin May 2015
Robert Metzger
 
Why apache Flink is the 4G of Big Data Analytics Frameworks
Why apache Flink is the 4G of Big Data Analytics FrameworksWhy apache Flink is the 4G of Big Data Analytics Frameworks
Why apache Flink is the 4G of Big Data Analytics Frameworks
Slim Baltagi
 
Robust stream processing with Apache Flink
Robust stream processing with Apache FlinkRobust stream processing with Apache Flink
Robust stream processing with Apache Flink
Aljoscha Krettek
 
Building and deploying LLM applications with Apache Airflow
Building and deploying LLM applications with Apache AirflowBuilding and deploying LLM applications with Apache Airflow
Building and deploying LLM applications with Apache Airflow
Kaxil Naik
 
Ufuc Celebi – Stream & Batch Processing in one System
Ufuc Celebi – Stream & Batch Processing in one SystemUfuc Celebi – Stream & Batch Processing in one System
Ufuc Celebi – Stream & Batch Processing in one System
Flink Forward
 
Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019
Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019
Python Streaming Pipelines on Flink - Beam Meetup at Lyft 2019
Thomas Weise
 
Apache Flink(tm) - A Next-Generation Stream Processor
Apache Flink(tm) - A Next-Generation Stream ProcessorApache Flink(tm) - A Next-Generation Stream Processor
Apache Flink(tm) - A Next-Generation Stream Processor
Aljoscha Krettek
 
Data Analysis With Apache Flink
Data Analysis With Apache FlinkData Analysis With Apache Flink
Data Analysis With Apache Flink
DataWorks Summit
 
Data Analysis with Apache Flink (Hadoop Summit, 2015)
Data Analysis with Apache Flink (Hadoop Summit, 2015)Data Analysis with Apache Flink (Hadoop Summit, 2015)
Data Analysis with Apache Flink (Hadoop Summit, 2015)
Aljoscha Krettek
 
Apache Flink Training Workshop @ HadoopCon2016 - #1 System Overview
Apache Flink Training Workshop @ HadoopCon2016 - #1 System OverviewApache Flink Training Workshop @ HadoopCon2016 - #1 System Overview
Apache Flink Training Workshop @ HadoopCon2016 - #1 System Overview
Apache Flink Taiwan User Group
 
Apache Flink Overview at SF Spark and Friends
Apache Flink Overview at SF Spark and FriendsApache Flink Overview at SF Spark and Friends
Apache Flink Overview at SF Spark and Friends
Stephan Ewen
 
Ad

More from Flink Forward (20)

Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...
Flink Forward
 
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
Flink Forward
 
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Flink Forward
 
One sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async SinkOne sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async Sink
Flink Forward
 
Tuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptxTuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptx
Flink Forward
 
Apache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native EraApache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native Era
Flink Forward
 
Where is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in FlinkWhere is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in Flink
Flink Forward
 
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production DeploymentUsing the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Flink Forward
 
The Current State of Table API in 2022
The Current State of Table API in 2022The Current State of Table API in 2022
The Current State of Table API in 2022
Flink Forward
 
Flink SQL on Pulsar made easy
Flink SQL on Pulsar made easyFlink SQL on Pulsar made easy
Flink SQL on Pulsar made easy
Flink Forward
 
Dynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data AlertsDynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data Alerts
Flink Forward
 
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and PinotExactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Flink Forward
 
Processing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial ServicesProcessing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial Services
Flink Forward
 
Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...
Flink Forward
 
Batch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergBatch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & Iceberg
Flink Forward
 
Welcome to the Flink Community!
Welcome to the Flink Community!Welcome to the Flink Community!
Welcome to the Flink Community!
Flink Forward
 
Practical learnings from running thousands of Flink jobs
Practical learnings from running thousands of Flink jobsPractical learnings from running thousands of Flink jobs
Practical learnings from running thousands of Flink jobs
Flink Forward
 
Extending Flink SQL for stream processing use cases
Extending Flink SQL for stream processing use casesExtending Flink SQL for stream processing use cases
Extending Flink SQL for stream processing use cases
Flink Forward
 
The top 3 challenges running multi-tenant Flink at scale
The top 3 challenges running multi-tenant Flink at scaleThe top 3 challenges running multi-tenant Flink at scale
The top 3 challenges running multi-tenant Flink at scale
Flink Forward
 
Using Queryable State for Fun and Profit
Using Queryable State for Fun and ProfitUsing Queryable State for Fun and Profit
Using Queryable State for Fun and Profit
Flink Forward
 
Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...
Flink Forward
 
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
Flink Forward
 
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Flink Forward
 
One sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async SinkOne sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async Sink
Flink Forward
 
Tuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptxTuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptx
Flink Forward
 
Apache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native EraApache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native Era
Flink Forward
 
Where is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in FlinkWhere is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in Flink
Flink Forward
 
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production DeploymentUsing the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Flink Forward
 
The Current State of Table API in 2022
The Current State of Table API in 2022The Current State of Table API in 2022
The Current State of Table API in 2022
Flink Forward
 
Flink SQL on Pulsar made easy
Flink SQL on Pulsar made easyFlink SQL on Pulsar made easy
Flink SQL on Pulsar made easy
Flink Forward
 
Dynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data AlertsDynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data Alerts
Flink Forward
 
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and PinotExactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Flink Forward
 
Processing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial ServicesProcessing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial Services
Flink Forward
 
Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...
Flink Forward
 
Batch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergBatch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & Iceberg
Flink Forward
 
Welcome to the Flink Community!
Welcome to the Flink Community!Welcome to the Flink Community!
Welcome to the Flink Community!
Flink Forward
 
Practical learnings from running thousands of Flink jobs
Practical learnings from running thousands of Flink jobsPractical learnings from running thousands of Flink jobs
Practical learnings from running thousands of Flink jobs
Flink Forward
 
Extending Flink SQL for stream processing use cases
Extending Flink SQL for stream processing use casesExtending Flink SQL for stream processing use cases
Extending Flink SQL for stream processing use cases
Flink Forward
 
The top 3 challenges running multi-tenant Flink at scale
The top 3 challenges running multi-tenant Flink at scaleThe top 3 challenges running multi-tenant Flink at scale
The top 3 challenges running multi-tenant Flink at scale
Flink Forward
 
Using Queryable State for Fun and Profit
Using Queryable State for Fun and ProfitUsing Queryable State for Fun and Profit
Using Queryable State for Fun and Profit
Flink Forward
 

Recently uploaded (20)

IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Build With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdfBuild With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdf
Google Developer Group - Harare
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
CSUC - Consorci de Serveis Universitaris de Catalunya
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
BookNet Canada
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
BookNet Canada
 

Apache Flink Training: System Overview

  • 2. 2 A stream processor with many applications Streaming dataflow runtime Apache Flink
  • 3. 1 year of Flink - code April 2014 April 2015
  • 4. Flink Community 0 20 40 60 80 100 120 Aug-10 Feb-11 Sep-11 Apr-12 Oct-12 May-13 Nov-13 Jun-14 Dec-14 Jul-15 #unique contributor ids by git commits In top 5 of Apache's big data projects after one year in the Apache Software Foundation
  • 5. The Apache Way  Flink is an Apache top-level project 5 • Independent, non-profit organization • Community-driven open source software development approach • Public communication and open to new contributors
  • 6. What is Apache Flink? 6 Gelly Table ML SAMOA DataSet (Java/Scala/Python) DataStream (Java/Scala) HadoopM/R Local Remote Yarn Tez Embedded Dataflow Dataflow(WiP) MRQL Table Cascading(WiP) Streaming dataflow runtime
  • 7. Native workload support 7 Flink Streaming topologies Heavy batch jobs Machine Learning at scale How can an engine natively support all these workloads? And what does native mean?
  • 8. E.g.: Non-native iterations 8 Step Step Step Step Step Client for (int i = 0; i < maxIterations; i++) { // Execute MapReduce job }
  • 9. E.g.: Non-native streaming 9 stream discretizer Job Job Job Job while (true) { // get next few records // issue batch job }
  • 10. Native workload support 10 Flink Stream processing Batch processing Machine Learning at scale How can an engine natively support all these workloads? And what does "native" mean? Graph Analysis
  • 11. Flink Engine 1. Execute everything as streams 2. Iterative (cyclic) dataflows 3. Mutable state 4. Operate on managed memory 5. Special code paths for batch 11 State + Computation
  • 12. What is a Flink Program? 12
  • 13. Gelly Table ML SAMOA DataSet (Java/Scala/Python) DataStream (Java/Scala) HadoopM/R Local Remote Yarn Tez Embedded Dataflow Dataflow(WiP) MRQL Table Cascading(WiP) Streaming dataflow runtime Flink stack
  • 14. Basic API Concept How do I write a Flink program? 1. Bootstrap sources 2. Apply operations 3. Output to source 14 Data Stream Operation Data Stream Source Sink Data Set Operation Data Set Source Sink
  • 15. Batch & Stream Processing  DataStream API 15 Stock Feed Name Price Microsoft 124 Google 516 Apple 235 … … Alert if Microsoft > 120 Write event to database Sum every 10 seconds Alert if sum > 10000 Microsoft 124 Google 516 Apple 235 Microsoft 124 Google 516 Apple 235 b h 2 1 3 5 7 4 … … Map Reduce a 1 2 …  DataSet API Example: Map/Reduce paradigm Example: Live Stock Feed
  • 16. Streaming & Batch 16 Batch finite blocking or pipelined high Streaming infinite pipelined low Input Data transfer Latency
  • 17. Scaling out 17 Data Set Operation Data Set Source Sink Data Set Operation Data Set Source SinkData Set Operation Data Set Source SinkData Set Operation Data Set Source SinkData Set Operation Data Set Source SinkData Set Operation Data Set Source SinkData Set Operation Data Set Source SinkData Set Operation Data Set Source Sink
  • 19. Sources (selection) Collection-based  fromCollection  fromElements File-based  TextInputFormat  CsvInputFormat Other  SocketInputFormat  KafkaInputFormat  Databases 19
  • 20. Sinks (selection) File-based  TextOutputFormat  CsvOutputFormat  PrintOutput Others  SocketOutputFormat  KafkaOutputFormat  Databases 20
  • 21. Hadoop Integration Out of the box  Access HDFS  Yarn Execution (covered later)  Reuse data types (Writables) With a thin wrapper  Reuse Hadoop input and output formats  Reuse functions like Map and Reduce 21
  • 22. What’s the Lifecycle of a Program? 22
  • 23. Architecture Overview  Client  Master (Job Manager)  Worker (Task Manager) 24 Client Job Manager Task Manager Task Manager Task Manager
  • 24. Client  Optimize  Construct job graph  Pass job graph to job manager  Retrieve job results 25 Job Manager Client case class Path (from: Long, to: Long) val tc = edges.iterate(10) { paths: DataSet[Path] => val next = paths .join(edges) .where("to") .equalTo("from") { (path, edge) => Path(path.from, edge.to) } .union(paths) .distinct() next } Optimizer Type extraction Data Source orders.tbl Filter Map DataSourc e lineitem.tbl Join Hybrid Hash build HT probe hash-part [0] hash-part [0] GroupRed sort forward
  • 25. Job Manager  Parallelization: Create Execution Graph  Scheduling: Assign tasks to task managers  State: Supervise the execution 26 Job Manager Data Source orders.tbl Filter Map DataSour ce lineitem.tbl Join Hybrid Hash build HT prob e hash-part [0] hash-part [0] GroupRed sort forwar d Task Manager Task Manager Task Manager Task Manager Data Source orders.tbl Filter Map DataSour ce lineitem.tbl Join Hybrid Hash build HT prob e hash-part [0] hash-part [0] GroupRed sort forwar d Data Source orders.tbl Filter Map DataSour ce lineitem.tbl Join Hybrid Hash build HT prob e hash-part [0] hash-part [0] GroupRed sort forwar d Data Source orders.tbl Filter Map DataSour ce lineitem.tbl Join Hybrid Hash build HT prob e hash-part [0] hash-part [0] GroupRed sort forwar d Data Source orders.tbl Filter Map DataSour ce lineitem.tbl Join Hybrid Hash build HT prob e hash-part [0] hash-part [0] GroupRed sort forwar d
  • 26. Task Manager  Operations are split up into tasks depending on the specified parallelism  Each parallel instance of an operation runs in a separate task slot  The scheduler may run several tasks from different operators in one task slot 27 Task Manager S l o t Task ManagerTask Manager S l o t S l o t
  • 28. Ways to Run a Flink Program 29 Gelly Table ML SAMOA DataSet (Java/Scala/Python) DataStream (Java/Scala) HadoopM/R Local Remote Yarn Tez Embedded Dataflow Dataflow(WiP) MRQL Table Cascading(WiP) Streaming dataflow runtime
  • 29. Local Execution  Starts local Flink cluster  All processes run in the same JVM  Behaves just like a regular Cluster  Very useful for developing and debugging 30 Job Manager Task Manager Task Manager Task Manager Task Manager JVM
  • 30. Embedded Execution  Runs operators on simple Java collections  Lower overhead  Does not use memory management  Useful for testing and debugging 31
  • 31. Remote Execution  Submit a Job remotely  Monitor the status of a job 32 Client Job Manager Cluster Task Manager Task Manager Task Manager Task Manager Submit job
  • 32. YARN Execution  Multi-user scenario  Resource sharing  Uses YARN containers to run a Flink cluster  Easy to setup 33 Client Node Manager Job Manager YARN Cluster Resource Manager Node Manager Task Manager Node Manager Task Manager Node Manager Other Application
  • 33. Execution  Leverages Apache Tez’s runtime  Built on top of YARN  Good YARN citizen  Fast path to elastic deployments  Slower than native Flink 34
  • 34. Flink compared to other projects 35
  • 35. Batch & Streaming projects Batch only Streaming only Hybrid 36
  • 36. Batch comparison 37 API low-level high-level high-level Data Transfer batch batch pipelined & batch Memory Management disk-based JVM-managed Active managed Iterations file system cached in-memory cached streamed Fault tolerance task level task level job level Good at massive scale out data exploration heavy backend & iterative jobs Libraries many external built-in & external evolving built-in & external
  • 37. Streaming comparison 38 Streaming “true” mini batches “true” API low-level high-level high-level Fault tolerance tuple-level ACKs RDD-based (lineage) coarse checkpointing State not built-in external internal Exactly once at least once exactly once exactly once Windowing not built-in restricted flexible Latency low medium low Throughput medium high high
  • 38. Thank you for listening! 39

Editor's Notes

  • #5: dev list: 300-400 messages/month. record 1000 messages on
  翻译: