SlideShare a Scribd company logo
Aljoscha Krettek – PMC of Apache Flink and Apache Beam, Co-Founder at data Artisans
Apache Flink® and what it is used for
© 2018 data Artisans2
About Data Artisans
Original Creators of
Apache Flink®
RealTime Stream Processing
Enterprise Ready
2008 2009 2011
Studying and working at IBM
Development on Stratosphere begins
I joinTU Berlin research group with other co-founders
2014
data Artisans is founded
© 2018 data Artisans3
What is Apache Flink?
Queries
Applications
Devices
etc.
Database
Stream
File / Object
Storage
Historic
Data
Streams
Application
Stateful computations over streams
real-time and historic
fast, scalable, fault tolerant, in-memory,
event time, large state, exactly-once
© 2018 data Artisans4
Overview of Flink Use Cases
Event-driven
applications
Stream
Processing
Batch
processing
© 2018 data Artisans5
Batch Processing
a.k.a. collect now, figure
out later
© 2018 data Artisans6
Batch Processing Technologies Supported by Flink
DataSet
API
© 2018 data Artisans7
Observation 1
The origin of data are streams
© 2018 data Artisans8
Stream Processing
we can build applications directly
on data streams
© 2018 data Artisans9
Stream Processing Technologies Supported by Flink
DataStream
API
© 2018 data Artisans10
Observation 2
Stream Processing changes the database-centric
architecture
© 2018 data Artisans11
Changing the Two-Tier Architecture
reads/writes across
tier boundary
asynchronous writes
of large blobs
all modifications
are local
Classic tiered architecture Streaming architectureClassic tiered architecture
database
layer
compute
layer
application working state
+ historic state
compute
+
stream storage
and
snapshot storage
(backup)
application state
Streaming architecture
© 2018 data Artisans12
Keystone Routing Pipeline at Netflix
(as presented at Flink Forward San Francisco, 2018)
@
 Athena X
 SQL to define metrics
 Thresholds and actions to trigger
 Blends analytics and
actions
Streams from
Hadoop, Kafka, etc
SQL, thresholds,
actions
Analytics
Alerts
Derived streams
© 2018 data Artisans13
Observation 3
Stream Processing is about building applications,
not platforms
© 2018 data Artisans14
Internal streaming data platforms
built with Apache Flink
© 2018 data Artisans15
KubernetesResource Manager
Logging
Metrics
CI / CD
Application Platforms
deploying new
applications
scaling
applications
Kubernetes
© 2018 data Artisans16
Kubernetes
Database
Kubernetes
• Example: Scaling down a replicated database
• 3 replicas, 4 node scale down
need to move or
reorganize data
before container
shutdown
Kubernetes & stateful applications What about stateful containers?
© 2018 data Artisans17
• consistent stateful upgrades
‒application evolution and bug fixes
• migration of application state
‒cluster migration, A/B testing
• re-processing and reinstatement
‒fix corrupt results, bootstrap new applications
• state evolution (schema evolution)
A B
Stateful Questions
Container-based
Resource Orchestration
Stateful Stream
Processing & Snapshots
Kubernetes Apache Flink
Container-based
platform for stateful
data-driven applications
dA Platform
Code, Resource, Config, and
Snapshot Management
Application
Manager
© 2018 data Artisans18
Architecture
Apache Flink
Stateful stream processing
Kubernetes
Container platform
Logging
Metrics
dA Application
Manager
Application
lifecycle
management
Storage
In Action
App
Manager
Kubernetes
Resource
Allocation
Job Control
Snapshot
Management
CI/CDWeb
interface
© 2018 data Artisans19
Powered by Apache Flink
© 2018 data Artisans20
Free Trial Download of data Artisans Platform
data-artisans.com/download
THANK YOU! WE ARE HIRING
data-artisans.com/careers
@aljoscha
@dataArtisans
@ApacheFlink
© 2018 data Artisans22
Backup Slides
Ad

More Related Content

What's hot (20)

Introduction to Apache Flink - Fast and reliable big data processing
Introduction to Apache Flink - Fast and reliable big data processingIntroduction to Apache Flink - Fast and reliable big data processing
Introduction to Apache Flink - Fast and reliable big data processing
Till Rohrmann
 
Introduction To Flink
Introduction To FlinkIntroduction To Flink
Introduction To Flink
Knoldus Inc.
 
Kafka 101
Kafka 101Kafka 101
Kafka 101
Clement Demonchy
 
Streaming SQL with Apache Calcite
Streaming SQL with Apache CalciteStreaming SQL with Apache Calcite
Streaming SQL with Apache Calcite
Julian Hyde
 
Apache Beam: A unified model for batch and stream processing data
Apache Beam: A unified model for batch and stream processing dataApache Beam: A unified model for batch and stream processing data
Apache Beam: A unified model for batch and stream processing data
DataWorks Summit/Hadoop Summit
 
Kafka 101
Kafka 101Kafka 101
Kafka 101
Aparna Pillai
 
Evening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in FlinkEvening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in Flink
Flink Forward
 
Apache Kafka Introduction
Apache Kafka IntroductionApache Kafka Introduction
Apache Kafka Introduction
Amita Mirajkar
 
Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021
Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021
Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021
StreamNative
 
Cassandra Introduction & Features
Cassandra Introduction & FeaturesCassandra Introduction & Features
Cassandra Introduction & Features
DataStax Academy
 
Extending Flink SQL for stream processing use cases
Extending Flink SQL for stream processing use casesExtending Flink SQL for stream processing use cases
Extending Flink SQL for stream processing use cases
Flink Forward
 
Introduction to Apache Kafka
Introduction to Apache KafkaIntroduction to Apache Kafka
Introduction to Apache Kafka
Jeff Holoman
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks
 
Apache NiFi Crash Course Intro
Apache NiFi Crash Course IntroApache NiFi Crash Course Intro
Apache NiFi Crash Course Intro
DataWorks Summit/Hadoop Summit
 
Apache kafka
Apache kafkaApache kafka
Apache kafka
NexThoughts Technologies
 
Introduction to Stream Processing
Introduction to Stream ProcessingIntroduction to Stream Processing
Introduction to Stream Processing
Guido Schmutz
 
Introduction to Spark Streaming
Introduction to Spark StreamingIntroduction to Spark Streaming
Introduction to Spark Streaming
datamantra
 
Apache Flink internals
Apache Flink internalsApache Flink internals
Apache Flink internals
Kostas Tzoumas
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
Alexey Grishchenko
 
Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...
Flink Forward
 
Introduction to Apache Flink - Fast and reliable big data processing
Introduction to Apache Flink - Fast and reliable big data processingIntroduction to Apache Flink - Fast and reliable big data processing
Introduction to Apache Flink - Fast and reliable big data processing
Till Rohrmann
 
Introduction To Flink
Introduction To FlinkIntroduction To Flink
Introduction To Flink
Knoldus Inc.
 
Streaming SQL with Apache Calcite
Streaming SQL with Apache CalciteStreaming SQL with Apache Calcite
Streaming SQL with Apache Calcite
Julian Hyde
 
Apache Beam: A unified model for batch and stream processing data
Apache Beam: A unified model for batch and stream processing dataApache Beam: A unified model for batch and stream processing data
Apache Beam: A unified model for batch and stream processing data
DataWorks Summit/Hadoop Summit
 
Evening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in FlinkEvening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in Flink
Flink Forward
 
Apache Kafka Introduction
Apache Kafka IntroductionApache Kafka Introduction
Apache Kafka Introduction
Amita Mirajkar
 
Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021
Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021
Trino: A Ludicrously Fast Query Engine - Pulsar Summit NA 2021
StreamNative
 
Cassandra Introduction & Features
Cassandra Introduction & FeaturesCassandra Introduction & Features
Cassandra Introduction & Features
DataStax Academy
 
Extending Flink SQL for stream processing use cases
Extending Flink SQL for stream processing use casesExtending Flink SQL for stream processing use cases
Extending Flink SQL for stream processing use cases
Flink Forward
 
Introduction to Apache Kafka
Introduction to Apache KafkaIntroduction to Apache Kafka
Introduction to Apache Kafka
Jeff Holoman
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks
 
Introduction to Stream Processing
Introduction to Stream ProcessingIntroduction to Stream Processing
Introduction to Stream Processing
Guido Schmutz
 
Introduction to Spark Streaming
Introduction to Spark StreamingIntroduction to Spark Streaming
Introduction to Spark Streaming
datamantra
 
Apache Flink internals
Apache Flink internalsApache Flink internals
Apache Flink internals
Kostas Tzoumas
 
Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...
Flink Forward
 

Similar to Apache Flink and what it is used for (20)

The Past, Present, and Future of Apache Flink®
The Past, Present, and Future of Apache Flink®The Past, Present, and Future of Apache Flink®
The Past, Present, and Future of Apache Flink®
Aljoscha Krettek
 
(Past), Present, and Future of Apache Flink
(Past), Present, and Future of Apache Flink(Past), Present, and Future of Apache Flink
(Past), Present, and Future of Apache Flink
Aljoscha Krettek
 
Flink Forward San Francisco 2018: Robert Metzger & Patrick Lucas - "dA Platfo...
Flink Forward San Francisco 2018: Robert Metzger & Patrick Lucas - "dA Platfo...Flink Forward San Francisco 2018: Robert Metzger & Patrick Lucas - "dA Platfo...
Flink Forward San Francisco 2018: Robert Metzger & Patrick Lucas - "dA Platfo...
Flink Forward
 
dA Platform Overview
dA Platform OverviewdA Platform Overview
dA Platform Overview
Robert Metzger
 
The Past, Present, and Future of Apache Flink
The Past, Present, and Future of Apache FlinkThe Past, Present, and Future of Apache Flink
The Past, Present, and Future of Apache Flink
Aljoscha Krettek
 
Flink Forward Berlin 2018: Aljoscha Krettek & Till Rohrmann - Keynote: "A Yea...
Flink Forward Berlin 2018: Aljoscha Krettek & Till Rohrmann - Keynote: "A Yea...Flink Forward Berlin 2018: Aljoscha Krettek & Till Rohrmann - Keynote: "A Yea...
Flink Forward Berlin 2018: Aljoscha Krettek & Till Rohrmann - Keynote: "A Yea...
Flink Forward
 
Leveraging Mainframe Data for Modern Analytics
Leveraging Mainframe Data for Modern AnalyticsLeveraging Mainframe Data for Modern Analytics
Leveraging Mainframe Data for Modern Analytics
confluent
 
Real-time Analysis of Data Processing Pipelines with Spring Cloud Data Flow a...
Real-time Analysis of Data Processing Pipelines with Spring Cloud Data Flow a...Real-time Analysis of Data Processing Pipelines with Spring Cloud Data Flow a...
Real-time Analysis of Data Processing Pipelines with Spring Cloud Data Flow a...
VMware Tanzu
 
Stream processing for the practitioner: Blueprints for common stream processi...
Stream processing for the practitioner: Blueprints for common stream processi...Stream processing for the practitioner: Blueprints for common stream processi...
Stream processing for the practitioner: Blueprints for common stream processi...
Aljoscha Krettek
 
Big Data LDN 2018: STREAM PROCESSING TAKES ON EVERYTHING
Big Data LDN 2018: STREAM PROCESSING TAKES ON EVERYTHINGBig Data LDN 2018: STREAM PROCESSING TAKES ON EVERYTHING
Big Data LDN 2018: STREAM PROCESSING TAKES ON EVERYTHING
Matt Stubbs
 
Streaming in the Wild with Apache Flink
Streaming in the Wild with Apache FlinkStreaming in the Wild with Apache Flink
Streaming in the Wild with Apache Flink
Kostas Tzoumas
 
Confluent kafka meetupseattle jan2017
Confluent kafka meetupseattle jan2017Confluent kafka meetupseattle jan2017
Confluent kafka meetupseattle jan2017
Nitin Kumar
 
Hortonworks DataFlow (HDF) 3.3 - Taking Stream Processing to the Next Level
Hortonworks DataFlow (HDF) 3.3 - Taking Stream Processing to the Next LevelHortonworks DataFlow (HDF) 3.3 - Taking Stream Processing to the Next Level
Hortonworks DataFlow (HDF) 3.3 - Taking Stream Processing to the Next Level
Hortonworks
 
Overview of Apache Fink: the 4 G of Big Data Analytics Frameworks
Overview of Apache Fink: the 4 G of Big Data Analytics FrameworksOverview of Apache Fink: the 4 G of Big Data Analytics Frameworks
Overview of Apache Fink: the 4 G of Big Data Analytics Frameworks
Slim Baltagi
 
Overview of Apache Flink: the 4G of Big Data Analytics Frameworks
Overview of Apache Flink: the 4G of Big Data Analytics FrameworksOverview of Apache Flink: the 4G of Big Data Analytics Frameworks
Overview of Apache Flink: the 4G of Big Data Analytics Frameworks
DataWorks Summit/Hadoop Summit
 
Overview of Apache Fink: The 4G of Big Data Analytics Frameworks
Overview of Apache Fink: The 4G of Big Data Analytics FrameworksOverview of Apache Fink: The 4G of Big Data Analytics Frameworks
Overview of Apache Fink: The 4G of Big Data Analytics Frameworks
Slim Baltagi
 
Apache Flink: Real-World Use Cases for Streaming Analytics
Apache Flink: Real-World Use Cases for Streaming AnalyticsApache Flink: Real-World Use Cases for Streaming Analytics
Apache Flink: Real-World Use Cases for Streaming Analytics
Slim Baltagi
 
Cloud-Native Patterns for Data-Intensive Applications
Cloud-Native Patterns for Data-Intensive ApplicationsCloud-Native Patterns for Data-Intensive Applications
Cloud-Native Patterns for Data-Intensive Applications
VMware Tanzu
 
xGem Data Stream Processing
xGem Data Stream ProcessingxGem Data Stream Processing
xGem Data Stream Processing
Jorge Hirtz
 
Flink Forward Berlin 2018: Stephan Ewen - Keynote: "Unlocking the next wave o...
Flink Forward Berlin 2018: Stephan Ewen - Keynote: "Unlocking the next wave o...Flink Forward Berlin 2018: Stephan Ewen - Keynote: "Unlocking the next wave o...
Flink Forward Berlin 2018: Stephan Ewen - Keynote: "Unlocking the next wave o...
Flink Forward
 
The Past, Present, and Future of Apache Flink®
The Past, Present, and Future of Apache Flink®The Past, Present, and Future of Apache Flink®
The Past, Present, and Future of Apache Flink®
Aljoscha Krettek
 
(Past), Present, and Future of Apache Flink
(Past), Present, and Future of Apache Flink(Past), Present, and Future of Apache Flink
(Past), Present, and Future of Apache Flink
Aljoscha Krettek
 
Flink Forward San Francisco 2018: Robert Metzger & Patrick Lucas - "dA Platfo...
Flink Forward San Francisco 2018: Robert Metzger & Patrick Lucas - "dA Platfo...Flink Forward San Francisco 2018: Robert Metzger & Patrick Lucas - "dA Platfo...
Flink Forward San Francisco 2018: Robert Metzger & Patrick Lucas - "dA Platfo...
Flink Forward
 
The Past, Present, and Future of Apache Flink
The Past, Present, and Future of Apache FlinkThe Past, Present, and Future of Apache Flink
The Past, Present, and Future of Apache Flink
Aljoscha Krettek
 
Flink Forward Berlin 2018: Aljoscha Krettek & Till Rohrmann - Keynote: "A Yea...
Flink Forward Berlin 2018: Aljoscha Krettek & Till Rohrmann - Keynote: "A Yea...Flink Forward Berlin 2018: Aljoscha Krettek & Till Rohrmann - Keynote: "A Yea...
Flink Forward Berlin 2018: Aljoscha Krettek & Till Rohrmann - Keynote: "A Yea...
Flink Forward
 
Leveraging Mainframe Data for Modern Analytics
Leveraging Mainframe Data for Modern AnalyticsLeveraging Mainframe Data for Modern Analytics
Leveraging Mainframe Data for Modern Analytics
confluent
 
Real-time Analysis of Data Processing Pipelines with Spring Cloud Data Flow a...
Real-time Analysis of Data Processing Pipelines with Spring Cloud Data Flow a...Real-time Analysis of Data Processing Pipelines with Spring Cloud Data Flow a...
Real-time Analysis of Data Processing Pipelines with Spring Cloud Data Flow a...
VMware Tanzu
 
Stream processing for the practitioner: Blueprints for common stream processi...
Stream processing for the practitioner: Blueprints for common stream processi...Stream processing for the practitioner: Blueprints for common stream processi...
Stream processing for the practitioner: Blueprints for common stream processi...
Aljoscha Krettek
 
Big Data LDN 2018: STREAM PROCESSING TAKES ON EVERYTHING
Big Data LDN 2018: STREAM PROCESSING TAKES ON EVERYTHINGBig Data LDN 2018: STREAM PROCESSING TAKES ON EVERYTHING
Big Data LDN 2018: STREAM PROCESSING TAKES ON EVERYTHING
Matt Stubbs
 
Streaming in the Wild with Apache Flink
Streaming in the Wild with Apache FlinkStreaming in the Wild with Apache Flink
Streaming in the Wild with Apache Flink
Kostas Tzoumas
 
Confluent kafka meetupseattle jan2017
Confluent kafka meetupseattle jan2017Confluent kafka meetupseattle jan2017
Confluent kafka meetupseattle jan2017
Nitin Kumar
 
Hortonworks DataFlow (HDF) 3.3 - Taking Stream Processing to the Next Level
Hortonworks DataFlow (HDF) 3.3 - Taking Stream Processing to the Next LevelHortonworks DataFlow (HDF) 3.3 - Taking Stream Processing to the Next Level
Hortonworks DataFlow (HDF) 3.3 - Taking Stream Processing to the Next Level
Hortonworks
 
Overview of Apache Fink: the 4 G of Big Data Analytics Frameworks
Overview of Apache Fink: the 4 G of Big Data Analytics FrameworksOverview of Apache Fink: the 4 G of Big Data Analytics Frameworks
Overview of Apache Fink: the 4 G of Big Data Analytics Frameworks
Slim Baltagi
 
Overview of Apache Flink: the 4G of Big Data Analytics Frameworks
Overview of Apache Flink: the 4G of Big Data Analytics FrameworksOverview of Apache Flink: the 4G of Big Data Analytics Frameworks
Overview of Apache Flink: the 4G of Big Data Analytics Frameworks
DataWorks Summit/Hadoop Summit
 
Overview of Apache Fink: The 4G of Big Data Analytics Frameworks
Overview of Apache Fink: The 4G of Big Data Analytics FrameworksOverview of Apache Fink: The 4G of Big Data Analytics Frameworks
Overview of Apache Fink: The 4G of Big Data Analytics Frameworks
Slim Baltagi
 
Apache Flink: Real-World Use Cases for Streaming Analytics
Apache Flink: Real-World Use Cases for Streaming AnalyticsApache Flink: Real-World Use Cases for Streaming Analytics
Apache Flink: Real-World Use Cases for Streaming Analytics
Slim Baltagi
 
Cloud-Native Patterns for Data-Intensive Applications
Cloud-Native Patterns for Data-Intensive ApplicationsCloud-Native Patterns for Data-Intensive Applications
Cloud-Native Patterns for Data-Intensive Applications
VMware Tanzu
 
xGem Data Stream Processing
xGem Data Stream ProcessingxGem Data Stream Processing
xGem Data Stream Processing
Jorge Hirtz
 
Flink Forward Berlin 2018: Stephan Ewen - Keynote: "Unlocking the next wave o...
Flink Forward Berlin 2018: Stephan Ewen - Keynote: "Unlocking the next wave o...Flink Forward Berlin 2018: Stephan Ewen - Keynote: "Unlocking the next wave o...
Flink Forward Berlin 2018: Stephan Ewen - Keynote: "Unlocking the next wave o...
Flink Forward
 
Ad

More from Aljoscha Krettek (12)

Apache Flink(tm) - A Next-Generation Stream Processor
Apache Flink(tm) - A Next-Generation Stream ProcessorApache Flink(tm) - A Next-Generation Stream Processor
Apache Flink(tm) - A Next-Generation Stream Processor
Aljoscha Krettek
 
Talk Python To Me: Stream Processing in your favourite Language with Beam on ...
Talk Python To Me: Stream Processing in your favourite Language with Beam on ...Talk Python To Me: Stream Processing in your favourite Language with Beam on ...
Talk Python To Me: Stream Processing in your favourite Language with Beam on ...
Aljoscha Krettek
 
The Evolution of (Open Source) Data Processing
The Evolution of (Open Source) Data ProcessingThe Evolution of (Open Source) Data Processing
The Evolution of (Open Source) Data Processing
Aljoscha Krettek
 
Python Streaming Pipelines with Beam on Flink
Python Streaming Pipelines with Beam on FlinkPython Streaming Pipelines with Beam on Flink
Python Streaming Pipelines with Beam on Flink
Aljoscha Krettek
 
Robust stream processing with Apache Flink
Robust stream processing with Apache FlinkRobust stream processing with Apache Flink
Robust stream processing with Apache Flink
Aljoscha Krettek
 
Unified stateful big data processing in Apache Beam (incubating)
Unified stateful big data processing in Apache Beam (incubating)Unified stateful big data processing in Apache Beam (incubating)
Unified stateful big data processing in Apache Beam (incubating)
Aljoscha Krettek
 
Advanced Flink Training - Design patterns for streaming applications
Advanced Flink Training - Design patterns for streaming applicationsAdvanced Flink Training - Design patterns for streaming applications
Advanced Flink Training - Design patterns for streaming applications
Aljoscha Krettek
 
Apache Flink - A Stream Processing Engine
Apache Flink - A Stream Processing EngineApache Flink - A Stream Processing Engine
Apache Flink - A Stream Processing Engine
Aljoscha Krettek
 
Adventures in Timespace - How Apache Flink Handles Time and Windows
Adventures in Timespace - How Apache Flink Handles Time and WindowsAdventures in Timespace - How Apache Flink Handles Time and Windows
Adventures in Timespace - How Apache Flink Handles Time and Windows
Aljoscha Krettek
 
Flink 0.10 - Upcoming Features
Flink 0.10 - Upcoming FeaturesFlink 0.10 - Upcoming Features
Flink 0.10 - Upcoming Features
Aljoscha Krettek
 
Data Analysis with Apache Flink (Hadoop Summit, 2015)
Data Analysis with Apache Flink (Hadoop Summit, 2015)Data Analysis with Apache Flink (Hadoop Summit, 2015)
Data Analysis with Apache Flink (Hadoop Summit, 2015)
Aljoscha Krettek
 
Apache Flink Hands-On
Apache Flink Hands-OnApache Flink Hands-On
Apache Flink Hands-On
Aljoscha Krettek
 
Apache Flink(tm) - A Next-Generation Stream Processor
Apache Flink(tm) - A Next-Generation Stream ProcessorApache Flink(tm) - A Next-Generation Stream Processor
Apache Flink(tm) - A Next-Generation Stream Processor
Aljoscha Krettek
 
Talk Python To Me: Stream Processing in your favourite Language with Beam on ...
Talk Python To Me: Stream Processing in your favourite Language with Beam on ...Talk Python To Me: Stream Processing in your favourite Language with Beam on ...
Talk Python To Me: Stream Processing in your favourite Language with Beam on ...
Aljoscha Krettek
 
The Evolution of (Open Source) Data Processing
The Evolution of (Open Source) Data ProcessingThe Evolution of (Open Source) Data Processing
The Evolution of (Open Source) Data Processing
Aljoscha Krettek
 
Python Streaming Pipelines with Beam on Flink
Python Streaming Pipelines with Beam on FlinkPython Streaming Pipelines with Beam on Flink
Python Streaming Pipelines with Beam on Flink
Aljoscha Krettek
 
Robust stream processing with Apache Flink
Robust stream processing with Apache FlinkRobust stream processing with Apache Flink
Robust stream processing with Apache Flink
Aljoscha Krettek
 
Unified stateful big data processing in Apache Beam (incubating)
Unified stateful big data processing in Apache Beam (incubating)Unified stateful big data processing in Apache Beam (incubating)
Unified stateful big data processing in Apache Beam (incubating)
Aljoscha Krettek
 
Advanced Flink Training - Design patterns for streaming applications
Advanced Flink Training - Design patterns for streaming applicationsAdvanced Flink Training - Design patterns for streaming applications
Advanced Flink Training - Design patterns for streaming applications
Aljoscha Krettek
 
Apache Flink - A Stream Processing Engine
Apache Flink - A Stream Processing EngineApache Flink - A Stream Processing Engine
Apache Flink - A Stream Processing Engine
Aljoscha Krettek
 
Adventures in Timespace - How Apache Flink Handles Time and Windows
Adventures in Timespace - How Apache Flink Handles Time and WindowsAdventures in Timespace - How Apache Flink Handles Time and Windows
Adventures in Timespace - How Apache Flink Handles Time and Windows
Aljoscha Krettek
 
Flink 0.10 - Upcoming Features
Flink 0.10 - Upcoming FeaturesFlink 0.10 - Upcoming Features
Flink 0.10 - Upcoming Features
Aljoscha Krettek
 
Data Analysis with Apache Flink (Hadoop Summit, 2015)
Data Analysis with Apache Flink (Hadoop Summit, 2015)Data Analysis with Apache Flink (Hadoop Summit, 2015)
Data Analysis with Apache Flink (Hadoop Summit, 2015)
Aljoscha Krettek
 
Ad

Recently uploaded (20)

Jignesh Shah - The Innovator and Czar of Exchanges
Jignesh Shah - The Innovator and Czar of ExchangesJignesh Shah - The Innovator and Czar of Exchanges
Jignesh Shah - The Innovator and Czar of Exchanges
Jignesh Shah Innovator
 
Automate Studio Training: Building Scripts for SAP Fiori and GUI for HTML.pdf
Automate Studio Training: Building Scripts for SAP Fiori and GUI for HTML.pdfAutomate Studio Training: Building Scripts for SAP Fiori and GUI for HTML.pdf
Automate Studio Training: Building Scripts for SAP Fiori and GUI for HTML.pdf
Precisely
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Safe Software
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Financial Services Technology Summit 2025
Financial Services Technology Summit 2025Financial Services Technology Summit 2025
Financial Services Technology Summit 2025
Ray Bugg
 
Jignesh Shah - The Innovator and Czar of Exchanges
Jignesh Shah - The Innovator and Czar of ExchangesJignesh Shah - The Innovator and Czar of Exchanges
Jignesh Shah - The Innovator and Czar of Exchanges
Jignesh Shah Innovator
 
Automate Studio Training: Building Scripts for SAP Fiori and GUI for HTML.pdf
Automate Studio Training: Building Scripts for SAP Fiori and GUI for HTML.pdfAutomate Studio Training: Building Scripts for SAP Fiori and GUI for HTML.pdf
Automate Studio Training: Building Scripts for SAP Fiori and GUI for HTML.pdf
Precisely
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Safe Software
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Financial Services Technology Summit 2025
Financial Services Technology Summit 2025Financial Services Technology Summit 2025
Financial Services Technology Summit 2025
Ray Bugg
 

Apache Flink and what it is used for

  • 1. Aljoscha Krettek – PMC of Apache Flink and Apache Beam, Co-Founder at data Artisans Apache Flink® and what it is used for
  • 2. © 2018 data Artisans2 About Data Artisans Original Creators of Apache Flink® RealTime Stream Processing Enterprise Ready 2008 2009 2011 Studying and working at IBM Development on Stratosphere begins I joinTU Berlin research group with other co-founders 2014 data Artisans is founded
  • 3. © 2018 data Artisans3 What is Apache Flink? Queries Applications Devices etc. Database Stream File / Object Storage Historic Data Streams Application Stateful computations over streams real-time and historic fast, scalable, fault tolerant, in-memory, event time, large state, exactly-once
  • 4. © 2018 data Artisans4 Overview of Flink Use Cases Event-driven applications Stream Processing Batch processing
  • 5. © 2018 data Artisans5 Batch Processing a.k.a. collect now, figure out later
  • 6. © 2018 data Artisans6 Batch Processing Technologies Supported by Flink DataSet API
  • 7. © 2018 data Artisans7 Observation 1 The origin of data are streams
  • 8. © 2018 data Artisans8 Stream Processing we can build applications directly on data streams
  • 9. © 2018 data Artisans9 Stream Processing Technologies Supported by Flink DataStream API
  • 10. © 2018 data Artisans10 Observation 2 Stream Processing changes the database-centric architecture
  • 11. © 2018 data Artisans11 Changing the Two-Tier Architecture reads/writes across tier boundary asynchronous writes of large blobs all modifications are local Classic tiered architecture Streaming architectureClassic tiered architecture database layer compute layer application working state + historic state compute + stream storage and snapshot storage (backup) application state Streaming architecture
  • 12. © 2018 data Artisans12 Keystone Routing Pipeline at Netflix (as presented at Flink Forward San Francisco, 2018) @  Athena X  SQL to define metrics  Thresholds and actions to trigger  Blends analytics and actions Streams from Hadoop, Kafka, etc SQL, thresholds, actions Analytics Alerts Derived streams
  • 13. © 2018 data Artisans13 Observation 3 Stream Processing is about building applications, not platforms
  • 14. © 2018 data Artisans14 Internal streaming data platforms built with Apache Flink
  • 15. © 2018 data Artisans15 KubernetesResource Manager Logging Metrics CI / CD Application Platforms deploying new applications scaling applications Kubernetes
  • 16. © 2018 data Artisans16 Kubernetes Database Kubernetes • Example: Scaling down a replicated database • 3 replicas, 4 node scale down need to move or reorganize data before container shutdown Kubernetes & stateful applications What about stateful containers?
  • 17. © 2018 data Artisans17 • consistent stateful upgrades ‒application evolution and bug fixes • migration of application state ‒cluster migration, A/B testing • re-processing and reinstatement ‒fix corrupt results, bootstrap new applications • state evolution (schema evolution) A B Stateful Questions Container-based Resource Orchestration Stateful Stream Processing & Snapshots Kubernetes Apache Flink Container-based platform for stateful data-driven applications dA Platform Code, Resource, Config, and Snapshot Management Application Manager
  • 18. © 2018 data Artisans18 Architecture Apache Flink Stateful stream processing Kubernetes Container platform Logging Metrics dA Application Manager Application lifecycle management Storage In Action App Manager Kubernetes Resource Allocation Job Control Snapshot Management CI/CDWeb interface
  • 19. © 2018 data Artisans19 Powered by Apache Flink
  • 20. © 2018 data Artisans20 Free Trial Download of data Artisans Platform data-artisans.com/download
  • 21. THANK YOU! WE ARE HIRING data-artisans.com/careers @aljoscha @dataArtisans @ApacheFlink
  • 22. © 2018 data Artisans22 Backup Slides

Editor's Notes

  • #3: • data Artisans was founded by the original creators of Apache Flink • We provide dA Platform, a complete stream processing infrastructure with open-source Apache Flink
  • #13: Alibaba 472 mio records / second at peak Largest job: thousands of subtasks, tens of TBs of state Thousands of jobs >5k nodes >500k CPU cores Netflix ~ 3 trillion events/day ~2000 routing jobs ~10k containers ~200k parallel operator instances Uber Athena X SQL to define metrics Thresholds and actions to trigger Blends analytics and actions All have in common: built internal platforms
  • #21: • Also included is the Application Manager, which turns dA Platform into a self-service platform for stateful stream processing applications. • dA Platform is generally available, and you can download a free trial today!
  翻译: