Abstract From the past few years, Content based image retrieval (CBIR) has been a progressive and curious research area. Image retrieval is a process of extraction of the set of images from the available image database resembling the query image. Many CBIR techniques have been proposed for relevant image recoveries. However most of them are based on a particular feature extraction like texture based recovery, color based retrieval system etc. Here in this paper we put forward a novel technique for image recovery based on the integration of contour, texture, color, edge, and spatial features. Contourlet decomposition is employed for the extraction of contour features such as energy and standard deviation. Directionality and anisotropy are the properties of contourlet transformation that makes it an efficient technique. After feature extraction of query and database images, similarity measurement techniques such as Squared Euclidian and Manhattan distance were used to obtain the top N image matches. The simulation results in Matlab show that the proposed technique offers a better image retrieval. Satisfactory precision-recall rate is also maintained in this method. Keywords: Contourlet Decomposition, Local Binary Pattern, Squared Euclidian Distance, Manhattan Distance