There are many researchers who have studied the relevance feedback in the literature of content based image
retrieval (CBIR) community, but none of CBIR search engines support it because of scalability, effectiveness
and efficiency issues. In this, we had implemented an integrated relevance feedback for retrieving of web
images. Here, we had concentrated on integration of both textual features (TF) and visual features (VF) based
relevance feedback (RF), simultaneously we also tested them individually. The TFRF employs and effective
search result clustering (SRC) algorithm to get salient phrases. Then a new user interface (UI) is proposed to
support RF. Experimental results show that the proposed algorithm is scalable, effective and accurated