This document summarizes a hybrid text categorization method that combines Latent Semantic Indexing (LSI) and Rough Sets theory to reduce the dimensionality of text data and generate classification rules. It introduces LSI to reduce the feature space of text documents represented as high-dimensional vectors. Then it applies Rough Sets theory to the reduced feature space to locate a minimal set of keywords that can distinguish document classes and generate multiple knowledge bases for classification instead of a single one. The method is tested on text categorization tasks and shown to improve accuracy over previous Rough Sets approaches.