As machine learning evolves from experimentation to serving production workloads, so does the need to effectively manage the end-to-end training and production workflow including model management, versioning, and serving. Clemens Mewald offers an overview of TensorFlow Extended (TFX), the end-to-end machine learning platform for TensorFlow that powers products across all of Alphabet. Many TFX components rely on the Beam SDK to define portable data processing workflows. This talk motivates the development of a Spark runner for Beam Python.