SlideShare a Scribd company logo
CHANGES and BUGS
Mining and Predicting Software Development Activities




                  Thomas Zimmermann
Software development



         Build
Collaboration




Comm.      Version      Bug
Archive    Archive    Database


  Mining Software Archives
MY THESIS                                                             .
additions analysis architecture archives aspects   bug cached calls
changes collaboration complexities component concerns cross-
cutting cvs data defects design development drawing dynamine
eclipse effort evolves failures fine-grained fix fix-inducing
graphs     hatari   history locate matching method mining
predicting program programmers report repositories
revision software support system taking transactions
version visualizing
Contributions of the thesis

Fine-grained analysis of version archives.              1
Project-specific usage patterns of methods (FSE 2005)
Identification of cross-cutting changes (ASE 2006)



Mining bug databases to predict defects.                2
Dependencies predict defects (ISSRE 2007, ICSE 2008)
Domino effect: depending on defect-prone binaries increases
the chances of having defects (Software Evolution 2008).
Fine-grained analysis

public void createPartControl(Composite parent) {
    ...
    // add listener for editor page activation
    getSite().getPage().addPartListener(partListener);
}

public void dispose() {
    ...
    getSite().getPage().removePartListener(partListener);
}
Fine-grained analysis

public void createPartControl(Composite parent) {
    ...
    // add listener for editor page activation
    getSite().getPage().addPartListener(partListener);
}

public void dispose() {         co-added
    ...
    getSite().getPage().removePartListener(partListener);
}
Fine-grained analysis

public void createPartControl(Composite parent) {
    ...                                                      close
    // add listener for editor page activation      open
    getSite().getPage().addPartListener(partListener);      println
}

public void dispose() {          co-added
    ...
    getSite().getPage().removePartListener(partListener);
}                                                             begin




           Co-added items = patterns
Fine-grained analysis
                  public static final native void _XFree(int address);
                  public static final void XFree(int /*long*/ address) {
                        lock.lock();
                        try {
                              _XFree(address);
                        } finally {
                              lock.unlock();
                        }
                  }

                                  D IN
                              N GE I O N S
                          CHA CAT
                         1284 LO


Crosscutting changes = aspect candidates
Contributions of the thesis

Fine-grained analysis of version archives.              1
Project-specific usage patterns of methods (FSE 2005)
Identification of cross-cutting changes (ASE 2006)



Mining bug databases to predict defects.                2
Dependencies predict defects (ISSRE 2007, ICSE 2008)
Domino effect: depending on defect-prone binaries increases
the chances of having defects (Software Evolution 2008).
Bugs! Bugs! Bugs!
Quality assurance is limited...

   ...by time...   ...and by money.
Spent resources on the
components that need it most,
  i.e., are most likely to fail.
Indicators of defects

Code complexity              Code churn
Complex Code is more         Changes are likely to
prone to defects.            introduce new defects.



History                      Dependencies
Code with past defects is    Using compiler packages
more likely to have future   is more difficult than using
defects,                     packages for UI.
2252 Binaries
28.3 MLOC
Hypotheses

Complexity of dependency graphs                             Sub
                                                          system
correlates with the number of post-release defects (H1)    level
can predict the number of post-release defects (H2)



Network measures on dependency graphs                     Binary
correlate with the number of post-release defects (H3)     level

can predict the number of post-release defects (H4)
can indicate critical “escrow” binaries (H5)
DATA.   .
Data collection
                      six months
 Release point for
                       to collect
Windows Server 2003
                        defects



  Dependencies

Network Measures

Complexity Metrics     Defects
Centrality




Degree                         Closeness                           Betweenness
Blue binary has dependencies   Blue binary is close to all other   Blue binary connects the left
to many other binaries         binaries (only two steps)           with the right graph (bridge)
Centrality
• Degreethe number dependencies
          centrality
   -
   counts

• Closeness centrality binaries into account
   -
   takes distance to all other
   - Closeness: How close are the other binaries?
   - Reach: How many binaries can be reached (weighted)?
   - Eigenvector: similar to Pagerank
• Betweenness centrality paths through a binary
   -
   counts the number of shortest
Complexity metrics
Group                  Metrics                                 Aggregation
Module metrics         # functions in B
for a binary B         # global variables in B
                       # executable lines in f()
                       # parameters in f()
Per-function metrics                                              Total
                       # functions calling f()
for a function f()                                                Max
                       # functions called by f()
                       McCabe’s cyclomatic complexity of f()
                       # methods in C
                       # subclasses of C
OO metrics                                                        Total
                       Depth of C in the inheritance tree
for a class C                                                     Max
                       Coupling between classes
                       Cyclic coupling between classes
RESULTS.   .
Prediction


Input metrics and measures   Model        Prediction
                               PCA
                             Regression
  Metrics                                     Classification
                 SNA

 Metrics+SNA                                   Ranking
Classification


Has a binary a defect or not?




            or
Ranking


Which binaries have the most defects?




    or                or ... or
Random splits




4×50×
Classification
 (logistic regression)
Classification
            (logistic regression)




SNA increases the recall by 0.10 (at p=0.01)
  while precision remains comparable.
Ranking
          (linear regression)




SNA+METRICS increases the correlation
    by 0.10 (significant at p=0.01)
FUTURE WORK                                                        .
                                         bug cached calls
                          bug changes collaboration
additions analysis architecture archives aspects
analysis archives aspects
changes collaboration complexities component concerns cross-
complexities component concerns cross-cutting cvs data defects
cutting cvs data defects design development drawing dynamine
design development drawing eclipse erose evolves factor
eclipse effort evolvesfix-inducing fine-grained fix fix-inducing
failures fine-grained fix
                          failures
                                   fm graphs guide hatari
graphs hatari history locate matching method mining
history human matching mining networking
predicting program programmers report repositories
predicting program programmers system report repositories
revision software support
                               quality
                                        taking transactions
revision social software support system taking version
version visualizing
"Piled Higher and Deeper" by Jorge Cham. www.phdcomics.com
"Piled Higher and Deeper" by Jorge Cham. www.phdcomics.com
"Piled Higher and Deeper" by Jorge Cham. www.phdcomics.com
Contributions of the thesis

Fine-grained analysis of version archives.              1
Project-specific usage patterns of methods (FSE 2005)
Identification of cross-cutting changes (ASE 2006)



Mining bug databases to predict defects.                2
Dependencies predict defects (ISSRE 2007, ICSE 2008)
Domino effect: depending on defect-prone binaries increases
the chances of having defects (Software Evolution 2008).
Ad

More Related Content

What's hot (20)

Hierarchical Clustering
Hierarchical ClusteringHierarchical Clustering
Hierarchical Clustering
Carlos Castillo (ChaTo)
 
A Simple Introduction to Word Embeddings
A Simple Introduction to Word EmbeddingsA Simple Introduction to Word Embeddings
A Simple Introduction to Word Embeddings
Bhaskar Mitra
 
What is word2vec?
What is word2vec?What is word2vec?
What is word2vec?
Traian Rebedea
 
GPT : Generative Pre-Training Model
GPT : Generative Pre-Training ModelGPT : Generative Pre-Training Model
GPT : Generative Pre-Training Model
Zimin Park
 
Topic Modeling - NLP
Topic Modeling - NLPTopic Modeling - NLP
Topic Modeling - NLP
Rupak Roy
 
LDA Beginner's Tutorial
LDA Beginner's TutorialLDA Beginner's Tutorial
LDA Beginner's Tutorial
Wayne Lee
 
Text Classification/Categorization
Text Classification/CategorizationText Classification/Categorization
Text Classification/Categorization
Oswal Abhishek
 
Python Programming - VI. Classes and Objects
Python Programming - VI. Classes and ObjectsPython Programming - VI. Classes and Objects
Python Programming - VI. Classes and Objects
Ranel Padon
 
Probabilistic models (part 1)
Probabilistic models (part 1)Probabilistic models (part 1)
Probabilistic models (part 1)
KU Leuven
 
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
STAIR Lab, Chiba Institute of Technology
 
Cheat Sheet for Machine Learning in Python: Scikit-learn
Cheat Sheet for Machine Learning in Python: Scikit-learnCheat Sheet for Machine Learning in Python: Scikit-learn
Cheat Sheet for Machine Learning in Python: Scikit-learn
Karlijn Willems
 
التسويق عبر محركات البحث واستراتيجية شركة Trivago في ذلك
التسويق عبر محركات البحث واستراتيجية شركة Trivago في ذلك التسويق عبر محركات البحث واستراتيجية شركة Trivago في ذلك
التسويق عبر محركات البحث واستراتيجية شركة Trivago في ذلك
Hussein Bahadi حسين باهادي
 
Topic Modeling
Topic ModelingTopic Modeling
Topic Modeling
Kyunghoon Kim
 
bag-of-words models
bag-of-words models bag-of-words models
bag-of-words models
Xiaotao Zou
 
Natural Language processing Parts of speech tagging, its classes, and how to ...
Natural Language processing Parts of speech tagging, its classes, and how to ...Natural Language processing Parts of speech tagging, its classes, and how to ...
Natural Language processing Parts of speech tagging, its classes, and how to ...
Rajnish Raj
 
Topics Modeling
Topics ModelingTopics Modeling
Topics Modeling
Svitlana volkova
 
NLP with Deep Learning
NLP with Deep LearningNLP with Deep Learning
NLP with Deep Learning
fmguler
 
自然語言處理簡介
自然語言處理簡介自然語言處理簡介
自然語言處理簡介
Mark Chang
 
Text classification
Text classificationText classification
Text classification
Harry Potter
 
猫にはわかる暗号技術 1
猫にはわかる暗号技術 1猫にはわかる暗号技術 1
猫にはわかる暗号技術 1
Yu Ogawa
 
A Simple Introduction to Word Embeddings
A Simple Introduction to Word EmbeddingsA Simple Introduction to Word Embeddings
A Simple Introduction to Word Embeddings
Bhaskar Mitra
 
GPT : Generative Pre-Training Model
GPT : Generative Pre-Training ModelGPT : Generative Pre-Training Model
GPT : Generative Pre-Training Model
Zimin Park
 
Topic Modeling - NLP
Topic Modeling - NLPTopic Modeling - NLP
Topic Modeling - NLP
Rupak Roy
 
LDA Beginner's Tutorial
LDA Beginner's TutorialLDA Beginner's Tutorial
LDA Beginner's Tutorial
Wayne Lee
 
Text Classification/Categorization
Text Classification/CategorizationText Classification/Categorization
Text Classification/Categorization
Oswal Abhishek
 
Python Programming - VI. Classes and Objects
Python Programming - VI. Classes and ObjectsPython Programming - VI. Classes and Objects
Python Programming - VI. Classes and Objects
Ranel Padon
 
Probabilistic models (part 1)
Probabilistic models (part 1)Probabilistic models (part 1)
Probabilistic models (part 1)
KU Leuven
 
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
STAIR Lab, Chiba Institute of Technology
 
Cheat Sheet for Machine Learning in Python: Scikit-learn
Cheat Sheet for Machine Learning in Python: Scikit-learnCheat Sheet for Machine Learning in Python: Scikit-learn
Cheat Sheet for Machine Learning in Python: Scikit-learn
Karlijn Willems
 
التسويق عبر محركات البحث واستراتيجية شركة Trivago في ذلك
التسويق عبر محركات البحث واستراتيجية شركة Trivago في ذلك التسويق عبر محركات البحث واستراتيجية شركة Trivago في ذلك
التسويق عبر محركات البحث واستراتيجية شركة Trivago في ذلك
Hussein Bahadi حسين باهادي
 
bag-of-words models
bag-of-words models bag-of-words models
bag-of-words models
Xiaotao Zou
 
Natural Language processing Parts of speech tagging, its classes, and how to ...
Natural Language processing Parts of speech tagging, its classes, and how to ...Natural Language processing Parts of speech tagging, its classes, and how to ...
Natural Language processing Parts of speech tagging, its classes, and how to ...
Rajnish Raj
 
NLP with Deep Learning
NLP with Deep LearningNLP with Deep Learning
NLP with Deep Learning
fmguler
 
自然語言處理簡介
自然語言處理簡介自然語言處理簡介
自然語言處理簡介
Mark Chang
 
Text classification
Text classificationText classification
Text classification
Harry Potter
 
猫にはわかる暗号技術 1
猫にはわかる暗号技術 1猫にはわかる暗号技術 1
猫にはわかる暗号技術 1
Yu Ogawa
 

Similar to Changes and Bugs: Mining and Predicting Development Activities (20)

Changes and Bugs: Mining and Predicting Development Activities
Changes and Bugs: Mining and Predicting Development ActivitiesChanges and Bugs: Mining and Predicting Development Activities
Changes and Bugs: Mining and Predicting Development Activities
Thomas Zimmermann
 
Predicting Defects using Network Analysis on Dependency Graphs
Predicting Defects using Network Analysis on Dependency GraphsPredicting Defects using Network Analysis on Dependency Graphs
Predicting Defects using Network Analysis on Dependency Graphs
Thomas Zimmermann
 
A tale of bug prediction in software development
A tale of bug prediction in software developmentA tale of bug prediction in software development
A tale of bug prediction in software development
Martin Pinzger
 
VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assis...
VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assis...VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assis...
VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assis...
Stefano Dalla Palma
 
Measuring Your Code
Measuring Your CodeMeasuring Your Code
Measuring Your Code
Nate Abele
 
Measuring Your Code 2.0
Measuring Your Code 2.0Measuring Your Code 2.0
Measuring Your Code 2.0
Nate Abele
 
CMPT470-usask-guest-lecture
CMPT470-usask-guest-lectureCMPT470-usask-guest-lecture
CMPT470-usask-guest-lecture
Masud Rahman
 
Measuring maintainability; software metrics explained
Measuring maintainability; software metrics explainedMeasuring maintainability; software metrics explained
Measuring maintainability; software metrics explained
Dennis de Greef
 
Of Bugs and Men (and Plugins too)
Of Bugs and Men (and Plugins too)Of Bugs and Men (and Plugins too)
Of Bugs and Men (and Plugins too)
Michel Wermelinger
 
Of Bugs and Men
Of Bugs and MenOf Bugs and Men
Of Bugs and Men
Michel Wermelinger
 
CSMR06a.ppt
CSMR06a.pptCSMR06a.ppt
CSMR06a.ppt
Ptidej Team
 
MSR Asia Summit
MSR Asia SummitMSR Asia Summit
MSR Asia Summit
Ptidej Team
 
2014 01-ticosa
2014 01-ticosa2014 01-ticosa
2014 01-ticosa
Pharo
 
Predicting Fault-Prone Files using Machine Learning
Predicting Fault-Prone Files using Machine LearningPredicting Fault-Prone Files using Machine Learning
Predicting Fault-Prone Files using Machine Learning
Guido A. Ciollaro
 
Software Architecture - Quiz Questions
Software Architecture - Quiz QuestionsSoftware Architecture - Quiz Questions
Software Architecture - Quiz Questions
Ganesh Samarthyam
 
Software Architecture - Quiz Questions
Software Architecture - Quiz QuestionsSoftware Architecture - Quiz Questions
Software Architecture - Quiz Questions
CodeOps Technologies LLP
 
Linq To The Enterprise
Linq To The EnterpriseLinq To The Enterprise
Linq To The Enterprise
Daniel Egan
 
Bayesian network based software reliability prediction
Bayesian network based software reliability predictionBayesian network based software reliability prediction
Bayesian network based software reliability prediction
JULIO GONZALEZ SANZ
 
Populating a Release History Database (ICSM 2013 MIP)
Populating a Release History Database (ICSM 2013 MIP)Populating a Release History Database (ICSM 2013 MIP)
Populating a Release History Database (ICSM 2013 MIP)
Martin Pinzger
 
Dependability Benchmarking by Injecting Software Bugs
Dependability Benchmarking by Injecting Software BugsDependability Benchmarking by Injecting Software Bugs
Dependability Benchmarking by Injecting Software Bugs
Roberto Natella
 
Changes and Bugs: Mining and Predicting Development Activities
Changes and Bugs: Mining and Predicting Development ActivitiesChanges and Bugs: Mining and Predicting Development Activities
Changes and Bugs: Mining and Predicting Development Activities
Thomas Zimmermann
 
Predicting Defects using Network Analysis on Dependency Graphs
Predicting Defects using Network Analysis on Dependency GraphsPredicting Defects using Network Analysis on Dependency Graphs
Predicting Defects using Network Analysis on Dependency Graphs
Thomas Zimmermann
 
A tale of bug prediction in software development
A tale of bug prediction in software developmentA tale of bug prediction in software development
A tale of bug prediction in software development
Martin Pinzger
 
VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assis...
VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assis...VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assis...
VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assis...
Stefano Dalla Palma
 
Measuring Your Code
Measuring Your CodeMeasuring Your Code
Measuring Your Code
Nate Abele
 
Measuring Your Code 2.0
Measuring Your Code 2.0Measuring Your Code 2.0
Measuring Your Code 2.0
Nate Abele
 
CMPT470-usask-guest-lecture
CMPT470-usask-guest-lectureCMPT470-usask-guest-lecture
CMPT470-usask-guest-lecture
Masud Rahman
 
Measuring maintainability; software metrics explained
Measuring maintainability; software metrics explainedMeasuring maintainability; software metrics explained
Measuring maintainability; software metrics explained
Dennis de Greef
 
Of Bugs and Men (and Plugins too)
Of Bugs and Men (and Plugins too)Of Bugs and Men (and Plugins too)
Of Bugs and Men (and Plugins too)
Michel Wermelinger
 
2014 01-ticosa
2014 01-ticosa2014 01-ticosa
2014 01-ticosa
Pharo
 
Predicting Fault-Prone Files using Machine Learning
Predicting Fault-Prone Files using Machine LearningPredicting Fault-Prone Files using Machine Learning
Predicting Fault-Prone Files using Machine Learning
Guido A. Ciollaro
 
Software Architecture - Quiz Questions
Software Architecture - Quiz QuestionsSoftware Architecture - Quiz Questions
Software Architecture - Quiz Questions
Ganesh Samarthyam
 
Linq To The Enterprise
Linq To The EnterpriseLinq To The Enterprise
Linq To The Enterprise
Daniel Egan
 
Bayesian network based software reliability prediction
Bayesian network based software reliability predictionBayesian network based software reliability prediction
Bayesian network based software reliability prediction
JULIO GONZALEZ SANZ
 
Populating a Release History Database (ICSM 2013 MIP)
Populating a Release History Database (ICSM 2013 MIP)Populating a Release History Database (ICSM 2013 MIP)
Populating a Release History Database (ICSM 2013 MIP)
Martin Pinzger
 
Dependability Benchmarking by Injecting Software Bugs
Dependability Benchmarking by Injecting Software BugsDependability Benchmarking by Injecting Software Bugs
Dependability Benchmarking by Injecting Software Bugs
Roberto Natella
 
Ad

More from Thomas Zimmermann (20)

Software Analytics = Sharing Information
Software Analytics = Sharing InformationSoftware Analytics = Sharing Information
Software Analytics = Sharing Information
Thomas Zimmermann
 
MSR 2013 Preview
MSR 2013 PreviewMSR 2013 Preview
MSR 2013 Preview
Thomas Zimmermann
 
Predicting Method Crashes with Bytecode Operations
Predicting Method Crashes with Bytecode OperationsPredicting Method Crashes with Bytecode Operations
Predicting Method Crashes with Bytecode Operations
Thomas Zimmermann
 
Analytics for smarter software development
Analytics for smarter software development Analytics for smarter software development
Analytics for smarter software development
Thomas Zimmermann
 
Characterizing and Predicting Which Bugs Get Reopened
Characterizing and Predicting Which Bugs Get ReopenedCharacterizing and Predicting Which Bugs Get Reopened
Characterizing and Predicting Which Bugs Get Reopened
Thomas Zimmermann
 
Klingon Countdown Timer
Klingon Countdown TimerKlingon Countdown Timer
Klingon Countdown Timer
Thomas Zimmermann
 
Data driven games user research
Data driven games user researchData driven games user research
Data driven games user research
Thomas Zimmermann
 
Not my bug! Reasons for software bug report reassignments
Not my bug! Reasons for software bug report reassignmentsNot my bug! Reasons for software bug report reassignments
Not my bug! Reasons for software bug report reassignments
Thomas Zimmermann
 
Empirical Software Engineering at Microsoft Research
Empirical Software Engineering at Microsoft ResearchEmpirical Software Engineering at Microsoft Research
Empirical Software Engineering at Microsoft Research
Thomas Zimmermann
 
Security trend analysis with CVE topic models
Security trend analysis with CVE topic modelsSecurity trend analysis with CVE topic models
Security trend analysis with CVE topic models
Thomas Zimmermann
 
Analytics for software development
Analytics for software developmentAnalytics for software development
Analytics for software development
Thomas Zimmermann
 
Characterizing and predicting which bugs get fixed
Characterizing and predicting which bugs get fixedCharacterizing and predicting which bugs get fixed
Characterizing and predicting which bugs get fixed
Thomas Zimmermann
 
Cross-project defect prediction
Cross-project defect predictionCross-project defect prediction
Cross-project defect prediction
Thomas Zimmermann
 
Quality of Bug Reports in Open Source
Quality of Bug Reports in Open SourceQuality of Bug Reports in Open Source
Quality of Bug Reports in Open Source
Thomas Zimmermann
 
Meet Tom and his Fish
Meet Tom and his FishMeet Tom and his Fish
Meet Tom and his Fish
Thomas Zimmermann
 
Predicting Subsystem Defects using Dependency Graph Complexities
Predicting Subsystem Defects using Dependency Graph Complexities Predicting Subsystem Defects using Dependency Graph Complexities
Predicting Subsystem Defects using Dependency Graph Complexities
Thomas Zimmermann
 
Got Myth? Myths in Software Engineering
Got Myth? Myths in Software EngineeringGot Myth? Myths in Software Engineering
Got Myth? Myths in Software Engineering
Thomas Zimmermann
 
Mining Workspace Updates in CVS
Mining Workspace Updates in CVSMining Workspace Updates in CVS
Mining Workspace Updates in CVS
Thomas Zimmermann
 
Mining Software Archives to Support Software Development
Mining Software Archives to Support Software DevelopmentMining Software Archives to Support Software Development
Mining Software Archives to Support Software Development
Thomas Zimmermann
 
Unit testing with JUnit
Unit testing with JUnitUnit testing with JUnit
Unit testing with JUnit
Thomas Zimmermann
 
Software Analytics = Sharing Information
Software Analytics = Sharing InformationSoftware Analytics = Sharing Information
Software Analytics = Sharing Information
Thomas Zimmermann
 
Predicting Method Crashes with Bytecode Operations
Predicting Method Crashes with Bytecode OperationsPredicting Method Crashes with Bytecode Operations
Predicting Method Crashes with Bytecode Operations
Thomas Zimmermann
 
Analytics for smarter software development
Analytics for smarter software development Analytics for smarter software development
Analytics for smarter software development
Thomas Zimmermann
 
Characterizing and Predicting Which Bugs Get Reopened
Characterizing and Predicting Which Bugs Get ReopenedCharacterizing and Predicting Which Bugs Get Reopened
Characterizing and Predicting Which Bugs Get Reopened
Thomas Zimmermann
 
Data driven games user research
Data driven games user researchData driven games user research
Data driven games user research
Thomas Zimmermann
 
Not my bug! Reasons for software bug report reassignments
Not my bug! Reasons for software bug report reassignmentsNot my bug! Reasons for software bug report reassignments
Not my bug! Reasons for software bug report reassignments
Thomas Zimmermann
 
Empirical Software Engineering at Microsoft Research
Empirical Software Engineering at Microsoft ResearchEmpirical Software Engineering at Microsoft Research
Empirical Software Engineering at Microsoft Research
Thomas Zimmermann
 
Security trend analysis with CVE topic models
Security trend analysis with CVE topic modelsSecurity trend analysis with CVE topic models
Security trend analysis with CVE topic models
Thomas Zimmermann
 
Analytics for software development
Analytics for software developmentAnalytics for software development
Analytics for software development
Thomas Zimmermann
 
Characterizing and predicting which bugs get fixed
Characterizing and predicting which bugs get fixedCharacterizing and predicting which bugs get fixed
Characterizing and predicting which bugs get fixed
Thomas Zimmermann
 
Cross-project defect prediction
Cross-project defect predictionCross-project defect prediction
Cross-project defect prediction
Thomas Zimmermann
 
Quality of Bug Reports in Open Source
Quality of Bug Reports in Open SourceQuality of Bug Reports in Open Source
Quality of Bug Reports in Open Source
Thomas Zimmermann
 
Predicting Subsystem Defects using Dependency Graph Complexities
Predicting Subsystem Defects using Dependency Graph Complexities Predicting Subsystem Defects using Dependency Graph Complexities
Predicting Subsystem Defects using Dependency Graph Complexities
Thomas Zimmermann
 
Got Myth? Myths in Software Engineering
Got Myth? Myths in Software EngineeringGot Myth? Myths in Software Engineering
Got Myth? Myths in Software Engineering
Thomas Zimmermann
 
Mining Workspace Updates in CVS
Mining Workspace Updates in CVSMining Workspace Updates in CVS
Mining Workspace Updates in CVS
Thomas Zimmermann
 
Mining Software Archives to Support Software Development
Mining Software Archives to Support Software DevelopmentMining Software Archives to Support Software Development
Mining Software Archives to Support Software Development
Thomas Zimmermann
 
Ad

Recently uploaded (20)

UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
CSUC - Consorci de Serveis Universitaris de Catalunya
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
AI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdfAI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdf
Precisely
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
Agentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community MeetupAgentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community Meetup
Manoj Batra (1600 + Connections)
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptxWebinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
MSP360
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Does Pornify Allow NSFW? Everything You Should Know
Does Pornify Allow NSFW? Everything You Should KnowDoes Pornify Allow NSFW? Everything You Should Know
Does Pornify Allow NSFW? Everything You Should Know
Pornify CC
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
AI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdfAI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdf
Precisely
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptxWebinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
MSP360
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Does Pornify Allow NSFW? Everything You Should Know
Does Pornify Allow NSFW? Everything You Should KnowDoes Pornify Allow NSFW? Everything You Should Know
Does Pornify Allow NSFW? Everything You Should Know
Pornify CC
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 

Changes and Bugs: Mining and Predicting Development Activities

  • 1. CHANGES and BUGS Mining and Predicting Software Development Activities Thomas Zimmermann
  • 3. Collaboration Comm. Version Bug Archive Archive Database Mining Software Archives
  • 4. MY THESIS . additions analysis architecture archives aspects bug cached calls changes collaboration complexities component concerns cross- cutting cvs data defects design development drawing dynamine eclipse effort evolves failures fine-grained fix fix-inducing graphs hatari history locate matching method mining predicting program programmers report repositories revision software support system taking transactions version visualizing
  • 5. Contributions of the thesis Fine-grained analysis of version archives. 1 Project-specific usage patterns of methods (FSE 2005) Identification of cross-cutting changes (ASE 2006) Mining bug databases to predict defects. 2 Dependencies predict defects (ISSRE 2007, ICSE 2008) Domino effect: depending on defect-prone binaries increases the chances of having defects (Software Evolution 2008).
  • 6. Fine-grained analysis public void createPartControl(Composite parent) { ... // add listener for editor page activation getSite().getPage().addPartListener(partListener); } public void dispose() { ... getSite().getPage().removePartListener(partListener); }
  • 7. Fine-grained analysis public void createPartControl(Composite parent) { ... // add listener for editor page activation getSite().getPage().addPartListener(partListener); } public void dispose() { co-added ... getSite().getPage().removePartListener(partListener); }
  • 8. Fine-grained analysis public void createPartControl(Composite parent) { ... close // add listener for editor page activation open getSite().getPage().addPartListener(partListener); println } public void dispose() { co-added ... getSite().getPage().removePartListener(partListener); } begin Co-added items = patterns
  • 9. Fine-grained analysis public static final native void _XFree(int address); public static final void XFree(int /*long*/ address) { lock.lock(); try { _XFree(address); } finally { lock.unlock(); } } D IN N GE I O N S CHA CAT 1284 LO Crosscutting changes = aspect candidates
  • 10. Contributions of the thesis Fine-grained analysis of version archives. 1 Project-specific usage patterns of methods (FSE 2005) Identification of cross-cutting changes (ASE 2006) Mining bug databases to predict defects. 2 Dependencies predict defects (ISSRE 2007, ICSE 2008) Domino effect: depending on defect-prone binaries increases the chances of having defects (Software Evolution 2008).
  • 12. Quality assurance is limited... ...by time... ...and by money.
  • 13. Spent resources on the components that need it most, i.e., are most likely to fail.
  • 14. Indicators of defects Code complexity Code churn Complex Code is more Changes are likely to prone to defects. introduce new defects. History Dependencies Code with past defects is Using compiler packages more likely to have future is more difficult than using defects, packages for UI.
  • 16. Hypotheses Complexity of dependency graphs Sub system correlates with the number of post-release defects (H1) level can predict the number of post-release defects (H2) Network measures on dependency graphs Binary correlate with the number of post-release defects (H3) level can predict the number of post-release defects (H4) can indicate critical “escrow” binaries (H5)
  • 17. DATA. .
  • 18. Data collection six months Release point for to collect Windows Server 2003 defects Dependencies Network Measures Complexity Metrics Defects
  • 19. Centrality Degree Closeness Betweenness Blue binary has dependencies Blue binary is close to all other Blue binary connects the left to many other binaries binaries (only two steps) with the right graph (bridge)
  • 20. Centrality • Degreethe number dependencies centrality - counts • Closeness centrality binaries into account - takes distance to all other - Closeness: How close are the other binaries? - Reach: How many binaries can be reached (weighted)? - Eigenvector: similar to Pagerank • Betweenness centrality paths through a binary - counts the number of shortest
  • 21. Complexity metrics Group Metrics Aggregation Module metrics # functions in B for a binary B # global variables in B # executable lines in f() # parameters in f() Per-function metrics Total # functions calling f() for a function f() Max # functions called by f() McCabe’s cyclomatic complexity of f() # methods in C # subclasses of C OO metrics Total Depth of C in the inheritance tree for a class C Max Coupling between classes Cyclic coupling between classes
  • 22. RESULTS. .
  • 23. Prediction Input metrics and measures Model Prediction PCA Regression Metrics Classification SNA Metrics+SNA Ranking
  • 24. Classification Has a binary a defect or not? or
  • 25. Ranking Which binaries have the most defects? or or ... or
  • 28. Classification (logistic regression) SNA increases the recall by 0.10 (at p=0.01) while precision remains comparable.
  • 29. Ranking (linear regression) SNA+METRICS increases the correlation by 0.10 (significant at p=0.01)
  • 30. FUTURE WORK . bug cached calls bug changes collaboration additions analysis architecture archives aspects analysis archives aspects changes collaboration complexities component concerns cross- complexities component concerns cross-cutting cvs data defects cutting cvs data defects design development drawing dynamine design development drawing eclipse erose evolves factor eclipse effort evolvesfix-inducing fine-grained fix fix-inducing failures fine-grained fix failures fm graphs guide hatari graphs hatari history locate matching method mining history human matching mining networking predicting program programmers report repositories predicting program programmers system report repositories revision software support quality taking transactions revision social software support system taking version version visualizing
  • 31. "Piled Higher and Deeper" by Jorge Cham. www.phdcomics.com
  • 32. "Piled Higher and Deeper" by Jorge Cham. www.phdcomics.com
  • 33. "Piled Higher and Deeper" by Jorge Cham. www.phdcomics.com
  • 34. Contributions of the thesis Fine-grained analysis of version archives. 1 Project-specific usage patterns of methods (FSE 2005) Identification of cross-cutting changes (ASE 2006) Mining bug databases to predict defects. 2 Dependencies predict defects (ISSRE 2007, ICSE 2008) Domino effect: depending on defect-prone binaries increases the chances of having defects (Software Evolution 2008).
  翻译: