SlideShare a Scribd company logo
Visualising Multi-objective Data:
From League Tables to Optimisers, and back
David Walker
College of Engineering, Mathematics and Physical Sciences
University of Exeter
D.J.Walker@exeter.ac.uk
8th March 2017 – University of Plymouth
David Walker Visualising Multi-objective Data 8th March 2017 1 / 17
League Tables
Times Good University Guide, 2009
8 KPIs – NSS, research quality, student-staff ratio, services and
facilities spend, entry standards, completion, good honours, graduate
prospects
Uni NSS RAE
Student
staff
ratio
£/
student
Entry
Reqs.
Compl-
etion
1/
2:1
Pros-
pects
Ox. 0.840 6.200 11.600 2884.000 502.000 98.600 90.100 83.900
Camb. - 6.500 12.200 2299.000 518.000 97.900 85.400 88.400
Imp. 0.760 5.800 10.400 3218.000 473.000 96.000 69.100 89.300
LSE 0.740 6.300 12.600 1562.000 469.000 96.900 75.200 87.700
Warw. 0.760 5.600 13.600 1881.000 448.000 96.700 79.400 74.900
UCL 0.760 5.500 9.100 1702.000 434.000 94.300 75.100 81.500
Dur. 0.780 5.200 15.400 1375.000 447.000 96.400 78.800 75.900
York 0.770 5.500 13.100 1313.000 423.000 95.200 74.700 70.500
Bristol 0.750 5.200 14.700 1535.000 430.000 95.800 78.400 81.500
King’s 0.770 4.700 11.900 1696.000 406.000 93.200 72.100 80.400
David Walker Visualising Multi-objective Data 8th March 2017 2 / 17
Visualisation
Visualisation is a useful alternative to presenting data in a table – human
beings are well suited to understanding information visually
0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0
0.20.40.60.8
0.2
0.4
0.6
0.8
0.2
0.4
0.6
0.8
David Walker Visualising Multi-objective Data 8th March 2017 3 / 17
Visualisation
Visualisation is a useful alternative to presenting data in a table – human
beings are well suited to understanding information visually
0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0
0.20.40.60.8
0.2
0.4
0.6
0.8
0.2
0.4
0.6
0.8
Unfortunately people can generally only think in three dimensions
David Walker Visualising Multi-objective Data 8th March 2017 3 / 17
High-dimensional Visualisation
−1.5 −1.0 −0.5 0.0 0.5 1.0
−1.0
−0.5
0.0
0.5
1.0
1.5
f1,f2 f1,f3 f1,f4 f1,f5
f2,f3 f2,f4 f2,f5
f3,f4 f3,f5
f4,f5
f1 f2 f3 f4 f5
0.0
0.5
1.0
1.5
2.0
David Walker Visualising Multi-objective Data 8th March 2017 4 / 17
Evolutionary Many-objective Optimisation
Evolutionary algorithms generate solutions to many-objective
optimisation problems – comprising M = 4 (or more) conflicting
objectives
The quality of a solution p is evaluated using a set of objective
functions:
y = (f1(p), . . . , fM(p))
Compare pairs of solutions using dominance:
f(p) f(q) ⇔ ∀m(fm(p) ≤ fm(q)) ∧ ∃m(fm(p) < fm(q))
David Walker Visualising Multi-objective Data 8th March 2017 5 / 17
Evolutionary Many-objective Optimisation
Evolutionary algorithms generate solutions to many-objective
optimisation problems – comprising M = 4 (or more) conflicting
objectives
The quality of a solution p is evaluated using a set of objective
functions:
y = (f1(p), . . . , fM(p))
Compare pairs of solutions using dominance:
f(p) f(q) ⇔ ∀m(fm(p) ≤ fm(q)) ∧ ∃m(fm(p) < fm(q))
Visualise individuals according to their dominance relationships
David Walker Visualising Multi-objective Data 8th March 2017 5 / 17
Pareto Shells
Non-dominated Sorting
1 Set k = 1
2 Identify all of the
non-dominated individuals
and assign them to shell k
3 Increment k
4 If individuals remain, return
to step 2
Shell 1
Shell 4
Oxford
St Andrews
Warwick
Durham
York
Bristol
King's
Leicester
Nottingham
Southampton
Edinburgh
Lancaster
Glasgow
Aberdeen
Manchester
Strathclyde
Cambridge
Imperial
LSE
UCL
SOAS
Sheffield
East Anglia
Cardiff
Reading
Liverpool
Kent
Sussex
Essex
Hull
Royal Holloway
Bradford
Bedfordshire
Abertay
Bath
Newcastle
Surrey
Keele
Birmingham
Aston
Queen's Belfast
Queen Mary
Dundee
Heriot-Watt
City
Robert Gordon
N'ham Trent
Bournemouth
Brighton
Napier
UWIC Cardiff
Stirling
Brunel
Ulster
B'ham City
Glamorgan
Hertfordshire
Roehampton
Leeds
Oxford Brookes
Staffordshire
Coventry
Aberystwyth
Bangor
Swansea
Goldsmiths
Construct a graph
Arrange individuals (nodes) into columns according to Pareto shell
Place edges between individuals in adjacent shells where one
dominates the other
David Walker Visualising Multi-objective Data 8th March 2017 6 / 17
University League Tables
Colour nodes according to
average rank
Rank the individuals m
times (once for each
KPI) giving rim – the
rank of individual i on
KPI m
Average these ranks
¯ri =
1
M
M
m=1
rim
Shell 1
Shell 2
Shell 3
Shell 4
Shell 5
Shell 6Oxford (1)
St Andrews (7)
Warwick (4)
Durham (9)
York (11)
Bristol (10)
King's (8)
Loughborough (24)
Exeter (17)
Leicester (16)
Nottingham (12)
Southampton (13)
Edinburgh (15)
Lancaster (21)
Glasgow (17)
Aberdeen (29)
Manchester (22)
Strathclyde (36)
Cambridge (6)
Imperial (2)
LSE (5)
UCL (3)
SOAS (27)
Sheffield (20)
East Anglia (35)
Cardiff (26)
Reading (34)
Liverpool (31)
Kent (37)
Sussex (38)
Essex (43)
Hull (49)
Royal Holloway (33)
Bradford (42)
Bedfordshire (91)
Abertay (99)
Bath (14)
Newcastle (19)
Surrey (39)
Keele (40)
Birmingham (23)
Aston (30)
Queen's Belfast (25)
Queen Mary (28)
Dundee (41)
Heriot-Watt (44)
City (50)
Robert Gordon (55)
N'ham Trent (56)
Bournemouth (59)
Brighton (58)
Napier (71)
UWIC Cardiff (86)
Stirling (47)
Brunel (46)
Ulster (52)
B'ham City (60)
Glamorgan (69)
Hertfordshire (70)
Roehampton (80)
Leeds (32)
Oxford Brookes (53)
Staffordshire (72)
Coventry (68)
Aberystwyth (48)
Bangor (54)
Swansea (45)
Goldsmiths (51)
Portsmouth (60)
Plymouth (57)
Central Lancs (64)
West England (63)
Winchester (65)
Glasgow Cal (66)
Lampeter (81)
Bath Spa (75)
Northumbria (67)
U. Arts (72)
S'field Hallam (74)
De Montfort (78)
Canterbury CC (82)
Sunderland (84)
Salford (77)
Chester (87)
Huddersfield (89)
York St John (95)
Manchester Met (89)
Leeds Met (93)
Anglia Ruskin (103)
Bucks New (105)
QM Edinburgh (79)
Chichester (76)
Gloucestershire (62)
Derby (89)
West Scotland (100)
Edge Hill (106)
Cumbria (101)
Teesside (91)
Middlesex (98)
East London (104)
Worcester (85)
Northampton (83)
Kingston (94)
Soton Solent (110)
Wolverhampton (109)
London S Bank (112)
Liverpool JM (96)
Greenwich (108)
Thames Valley (113)
Westminster (97)
Bolton (111)
UWCN (107)
Lincoln (102)
D. Walker, R. Everson and J. Fieldsend, Visualisation and Ordering of Many-objective Populations. In Proc. IEEE Congress on
Evolutionary Computation (CEC 2010), pp3664–3671, 2010.
David Walker Visualising Multi-objective Data 8th March 2017 7 / 17
Water Quality Indicators
D. Walker, D. Jakovljevic´c, D. Savi´c and M. Radovanovi´c,
Multi-criterion Water Quality Analysis of the Danube River
in Serbia: A Visualisation Approach. Water Research 79
(158–172), 2015.
David Walker Visualising Multi-objective Data 8th March 2017 8 / 17
Heatmaps
A heatmap is a graphical
representation of a dataset –
rows indicate individuals and
columns indicate KPIs
“Warm” colours indicate large
values
“Cool” colours indicate small
values
1 2 3 4 5 6 7 8
Criteria
0
20
40
60
80
100
Individuals 15
30
45
60
75
90
105
David Walker Visualising Multi-objective Data 8th March 2017 9 / 17
Seriation of Heatmaps
Reorder the rows of the heatmap so that similar individuals are placed
together and patterns can be identified
Seriation is a procedure for permuting items based on their similarity
Aij = 1 −
1
M(N − 1)2
M
m=1
(rim − rjm)2
g(π) =
N
i=1
N
j=1
Aij (πi − πj )2
D. Walker, R. Everson and J. Fieldsend, Visualisation Mutually Non-dominating Solution Sets in Many-objective Optimisation.
In IEEE Transactions on Evolutionary Computation 17(2)165–184, 2013.
David Walker Visualising Multi-objective Data 8th March 2017 10 / 17
Seriation of Heatmaps
0 20 40 60 80 100
0
20
40
60
80
100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
David Walker Visualising Multi-objective Data 8th March 2017 11 / 17
Seriation of Heatmaps
0 20 40 60 80 100
0
20
40
60
80
100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0 20 40 60 80 100
0
20
40
60
80
100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
David Walker Visualising Multi-objective Data 8th March 2017 11 / 17
Seriation of Heatmaps: University League Tables
1 2 3 4 5 6 7 8
Criteria
0
20
40
60
80
100
Individuals
15
30
45
60
75
90
105
David Walker Visualising Multi-objective Data 8th March 2017 12 / 17
Seriation of Heatmaps: University League Tables
1 2 3 4 5 6 7 8
Criteria
0
20
40
60
80
100
Individuals
15
30
45
60
75
90
105
1 2 3 4 5 6 7 8
Criteria
72
68
49
5
53
9
Individuals
15
30
45
60
75
90
105
David Walker Visualising Multi-objective Data 8th March 2017 12 / 17
Seriation of Heatmaps: Radar Waveform Design
Seriate according to individuals then KPIs to reveal further
information
1 2 3 4 5 6 7 8 9
Criteria
0
20
40
60
80
100
120
140
160
180
Individuals
20
40
60
80
100
120
140
160
180
200
1 2 3 4 5 6 7 8 9
Criteria
77
28
142
185
104
114
147
65
76
32
Individuals
20
40
60
80
100
120
140
160
180
200
David Walker Visualising Multi-objective Data 8th March 2017 13 / 17
Seriation of Heatmaps: Radar Waveform Design
Seriate according to individuals then KPIs to reveal further
information
1 2 3 4 5 6 7 8 9
Criteria
0
20
40
60
80
100
120
140
160
180
Individuals
20
40
60
80
100
120
140
160
180
200
1 2 3 4 5 6 7 8 9
Criteria
77
28
142
185
104
114
147
65
76
32
Individuals
20
40
60
80
100
120
140
160
180
200
4 9 2 8 6 5 7 1 3
Criteria
77
28
142
185
104
114
147
65
76
32
Individuals
20
40
60
80
100
120
140
160
180
200
David Walker Visualising Multi-objective Data 8th March 2017 13 / 17
Treemaps
Visualise data represented as a tree
using space to illustrate the importance
of a node
Additional degrees of freedom (e.g.,
colour)
Many different algorithms for arranging
a treemap
Classification of the top 100
websites visited in 2010
(UK, France, Germany,
Italy, Spain, Switzerland,
Brazil, US and Australia)
David Walker Visualising Multi-objective Data 8th March 2017 14 / 17
Dominance trees
Step 1: Pareto sorting
Construct a partial ordering of individuals using Pareto sorting – this
results in a graph
Set 2: Prune edges using dominance distance
Remove edges such that each node has exactly one parent node (retain
the parent with the smallest dominance distance) and insert an artificial
“root” using the global best
A
B
C
D
E
F
D. Walker, Visualising Multi-objective Populations with Treemaps. In Proc. Genetic and Evolutionary Computation Conference
(GECCO 2015) Companion Volume, 963–970, 2015.
David Walker Visualising Multi-objective Data 8th March 2017 15 / 17
Dominance trees
Step 1: Pareto sorting
Construct a partial ordering of individuals using Pareto sorting – this
results in a graph
Set 2: Prune edges using dominance distance
Remove edges such that each node has exactly one parent node (retain
the parent with the smallest dominance distance) and insert an artificial
“root” using the global best
A
B
C
D
E
F
nr
A
B
C
D
E
F
D. Walker, Visualising Multi-objective Populations with Treemaps. In Proc. Genetic and Evolutionary Computation Conference
(GECCO 2015) Companion Volume, 963–970, 2015.
David Walker Visualising Multi-objective Data 8th March 2017 15 / 17
Circular Treemaps
Good University Guide
Oxford
SOAS
Water Quality Analysis
David Walker Visualising Multi-objective Data 8th March 2017 16 / 17
Summary
Performance data
Performance data is ubiquitous
University league tables, hospital performance, quality of life, water
quality, optimisation. . .
By visualising it we can better understand and make use of this data
Visualisation Methods
Pareto shells
Seriation
Treemaps
David Walker Visualising Multi-objective Data 8th March 2017 17 / 17
Ad

More Related Content

Viewers also liked (9)

Extreme JavaScript Performance
Extreme JavaScript PerformanceExtreme JavaScript Performance
Extreme JavaScript Performance
Thomas Fuchs
 
Modelo kata de competencia digital. isdi
Modelo kata de competencia digital. isdiModelo kata de competencia digital. isdi
Modelo kata de competencia digital. isdi
Fátima Gallo Martínez
 
ガチでビジネス DALIを使った照明制御
ガチでビジネス DALIを使った照明制御ガチでビジネス DALIを使った照明制御
ガチでビジネス DALIを使った照明制御
Takahiro Nakahata
 
Samad Oraee - Learn More About Foot Pain
Samad Oraee - Learn More About Foot PainSamad Oraee - Learn More About Foot Pain
Samad Oraee - Learn More About Foot Pain
Samad Oraee
 
Texto sobre la Consulta Previa/Conamaq-Cidob
Texto sobre la Consulta Previa/Conamaq-CidobTexto sobre la Consulta Previa/Conamaq-Cidob
Texto sobre la Consulta Previa/Conamaq-Cidob
somossur
 
Boletín 08/03/2017
Boletín 08/03/2017Boletín 08/03/2017
Boletín 08/03/2017
Openbank
 
Come creare e gestire campagne Google AdWords per E-Commerce | La settimana d...
Come creare e gestire campagne Google AdWords per E-Commerce | La settimana d...Come creare e gestire campagne Google AdWords per E-Commerce | La settimana d...
Come creare e gestire campagne Google AdWords per E-Commerce | La settimana d...
Ruben Vezzoli
 
Einführung Open Data
Einführung Open DataEinführung Open Data
Einführung Open Data
Stefan Kasberger
 
Extreme JavaScript Performance
Extreme JavaScript PerformanceExtreme JavaScript Performance
Extreme JavaScript Performance
Thomas Fuchs
 
Modelo kata de competencia digital. isdi
Modelo kata de competencia digital. isdiModelo kata de competencia digital. isdi
Modelo kata de competencia digital. isdi
Fátima Gallo Martínez
 
ガチでビジネス DALIを使った照明制御
ガチでビジネス DALIを使った照明制御ガチでビジネス DALIを使った照明制御
ガチでビジネス DALIを使った照明制御
Takahiro Nakahata
 
Samad Oraee - Learn More About Foot Pain
Samad Oraee - Learn More About Foot PainSamad Oraee - Learn More About Foot Pain
Samad Oraee - Learn More About Foot Pain
Samad Oraee
 
Texto sobre la Consulta Previa/Conamaq-Cidob
Texto sobre la Consulta Previa/Conamaq-CidobTexto sobre la Consulta Previa/Conamaq-Cidob
Texto sobre la Consulta Previa/Conamaq-Cidob
somossur
 
Boletín 08/03/2017
Boletín 08/03/2017Boletín 08/03/2017
Boletín 08/03/2017
Openbank
 
Come creare e gestire campagne Google AdWords per E-Commerce | La settimana d...
Come creare e gestire campagne Google AdWords per E-Commerce | La settimana d...Come creare e gestire campagne Google AdWords per E-Commerce | La settimana d...
Come creare e gestire campagne Google AdWords per E-Commerce | La settimana d...
Ruben Vezzoli
 

Similar to Visualising Multi-objective Data: From League Tables to Optimisers, and back (20)

SCONUL Summer Conference 2018 - Simon Walker
SCONUL Summer Conference 2018 - Simon WalkerSCONUL Summer Conference 2018 - Simon Walker
SCONUL Summer Conference 2018 - Simon Walker
sconul
 
RDF2Vec: RDF Graph Embeddings for Data Mining
RDF2Vec: RDF Graph Embeddings for Data MiningRDF2Vec: RDF Graph Embeddings for Data Mining
RDF2Vec: RDF Graph Embeddings for Data Mining
Petar Ristoski
 
Representing verifiable statistical index computations as linked data
Representing verifiable statistical index computations as linked dataRepresenting verifiable statistical index computations as linked data
Representing verifiable statistical index computations as linked data
Jose Emilio Labra Gayo
 
A discovery service for UK research data
A discovery service for UK research dataA discovery service for UK research data
A discovery service for UK research data
Jisc RDM
 
Business intelligence for higher education
Business intelligence for higher educationBusiness intelligence for higher education
Business intelligence for higher education
Jisc
 
EC-TEL 2016: Which Algorithms Suit Which Learning Environments?
EC-TEL 2016: Which Algorithms Suit Which Learning Environments?EC-TEL 2016: Which Algorithms Suit Which Learning Environments?
EC-TEL 2016: Which Algorithms Suit Which Learning Environments?
Simone Kopeinik
 
Preparing for the UK Research Data Registry and Discovery Service
Preparing for the UK Research Data Registry and Discovery ServicePreparing for the UK Research Data Registry and Discovery Service
Preparing for the UK Research Data Registry and Discovery Service
Repository Fringe
 
Parallelisation of the PC Algorithm (CAEPIA2015)
Parallelisation of the PC Algorithm (CAEPIA2015)Parallelisation of the PC Algorithm (CAEPIA2015)
Parallelisation of the PC Algorithm (CAEPIA2015)
AMIDST Toolbox
 
ACQSurvey (Poster)
ACQSurvey (Poster)ACQSurvey (Poster)
ACQSurvey (Poster)
Hossein A. (Saeed) Rahmani
 
Practical Data Visualization
Practical Data VisualizationPractical Data Visualization
Practical Data Visualization
Angela Zoss
 
Multi-Attribute Decision Making with VIKOR Method for Any Purpose Decision
Multi-Attribute Decision Making with VIKOR Method for Any Purpose DecisionMulti-Attribute Decision Making with VIKOR Method for Any Purpose Decision
Multi-Attribute Decision Making with VIKOR Method for Any Purpose Decision
Universitas Pembangunan Panca Budi
 
BICOD-2017
BICOD-2017BICOD-2017
BICOD-2017
Rim Moussa
 
Bicod2017
Bicod2017Bicod2017
Bicod2017
Rim Moussa
 
Descriptive Statistics, Numerical Description
Descriptive Statistics, Numerical DescriptionDescriptive Statistics, Numerical Description
Descriptive Statistics, Numerical Description
getyourcheaton
 
Model Analyses of Complex Systems Behavior using MADS,
Model Analyses of Complex Systems Behavior using MADS,Model Analyses of Complex Systems Behavior using MADS,
Model Analyses of Complex Systems Behavior using MADS,
Velimir (monty) Vesselinov
 
Curses, tradeoffs, and scalable management: advancing evolutionary direct pol...
Curses, tradeoffs, and scalable management: advancing evolutionary direct pol...Curses, tradeoffs, and scalable management: advancing evolutionary direct pol...
Curses, tradeoffs, and scalable management: advancing evolutionary direct pol...
Environmental Intelligence Lab
 
A Comparison of Propositionalization Strategies for Creating Features from Li...
A Comparison of Propositionalization Strategies for Creating Features from Li...A Comparison of Propositionalization Strategies for Creating Features from Li...
A Comparison of Propositionalization Strategies for Creating Features from Li...
Petar Ristoski
 
RichardPughspatial.ppt
RichardPughspatial.pptRichardPughspatial.ppt
RichardPughspatial.ppt
EnnerHereniodeAlcnta
 
STINGER: Multi-threaded Graph Streaming
STINGER: Multi-threaded Graph StreamingSTINGER: Multi-threaded Graph Streaming
STINGER: Multi-threaded Graph Streaming
Jason Riedy
 
Introduction.pptx
Introduction.pptxIntroduction.pptx
Introduction.pptx
Vishal543707
 
SCONUL Summer Conference 2018 - Simon Walker
SCONUL Summer Conference 2018 - Simon WalkerSCONUL Summer Conference 2018 - Simon Walker
SCONUL Summer Conference 2018 - Simon Walker
sconul
 
RDF2Vec: RDF Graph Embeddings for Data Mining
RDF2Vec: RDF Graph Embeddings for Data MiningRDF2Vec: RDF Graph Embeddings for Data Mining
RDF2Vec: RDF Graph Embeddings for Data Mining
Petar Ristoski
 
Representing verifiable statistical index computations as linked data
Representing verifiable statistical index computations as linked dataRepresenting verifiable statistical index computations as linked data
Representing verifiable statistical index computations as linked data
Jose Emilio Labra Gayo
 
A discovery service for UK research data
A discovery service for UK research dataA discovery service for UK research data
A discovery service for UK research data
Jisc RDM
 
Business intelligence for higher education
Business intelligence for higher educationBusiness intelligence for higher education
Business intelligence for higher education
Jisc
 
EC-TEL 2016: Which Algorithms Suit Which Learning Environments?
EC-TEL 2016: Which Algorithms Suit Which Learning Environments?EC-TEL 2016: Which Algorithms Suit Which Learning Environments?
EC-TEL 2016: Which Algorithms Suit Which Learning Environments?
Simone Kopeinik
 
Preparing for the UK Research Data Registry and Discovery Service
Preparing for the UK Research Data Registry and Discovery ServicePreparing for the UK Research Data Registry and Discovery Service
Preparing for the UK Research Data Registry and Discovery Service
Repository Fringe
 
Parallelisation of the PC Algorithm (CAEPIA2015)
Parallelisation of the PC Algorithm (CAEPIA2015)Parallelisation of the PC Algorithm (CAEPIA2015)
Parallelisation of the PC Algorithm (CAEPIA2015)
AMIDST Toolbox
 
Practical Data Visualization
Practical Data VisualizationPractical Data Visualization
Practical Data Visualization
Angela Zoss
 
Multi-Attribute Decision Making with VIKOR Method for Any Purpose Decision
Multi-Attribute Decision Making with VIKOR Method for Any Purpose DecisionMulti-Attribute Decision Making with VIKOR Method for Any Purpose Decision
Multi-Attribute Decision Making with VIKOR Method for Any Purpose Decision
Universitas Pembangunan Panca Budi
 
Descriptive Statistics, Numerical Description
Descriptive Statistics, Numerical DescriptionDescriptive Statistics, Numerical Description
Descriptive Statistics, Numerical Description
getyourcheaton
 
Model Analyses of Complex Systems Behavior using MADS,
Model Analyses of Complex Systems Behavior using MADS,Model Analyses of Complex Systems Behavior using MADS,
Model Analyses of Complex Systems Behavior using MADS,
Velimir (monty) Vesselinov
 
Curses, tradeoffs, and scalable management: advancing evolutionary direct pol...
Curses, tradeoffs, and scalable management: advancing evolutionary direct pol...Curses, tradeoffs, and scalable management: advancing evolutionary direct pol...
Curses, tradeoffs, and scalable management: advancing evolutionary direct pol...
Environmental Intelligence Lab
 
A Comparison of Propositionalization Strategies for Creating Features from Li...
A Comparison of Propositionalization Strategies for Creating Features from Li...A Comparison of Propositionalization Strategies for Creating Features from Li...
A Comparison of Propositionalization Strategies for Creating Features from Li...
Petar Ristoski
 
STINGER: Multi-threaded Graph Streaming
STINGER: Multi-threaded Graph StreamingSTINGER: Multi-threaded Graph Streaming
STINGER: Multi-threaded Graph Streaming
Jason Riedy
 
Ad

Recently uploaded (20)

Lesson-2.pptxjsjahajauahahagqiqhwjwjahaiq
Lesson-2.pptxjsjahajauahahagqiqhwjwjahaiqLesson-2.pptxjsjahajauahahagqiqhwjwjahaiq
Lesson-2.pptxjsjahajauahahagqiqhwjwjahaiq
AngelPinedaTaguinod
 
Introduction to Artificial Intelligence_ Lec 2
Introduction to Artificial Intelligence_ Lec 2Introduction to Artificial Intelligence_ Lec 2
Introduction to Artificial Intelligence_ Lec 2
Dalal2Ali
 
MLOps_with_SageMaker_Template_EN idioma inglés
MLOps_with_SageMaker_Template_EN idioma inglésMLOps_with_SageMaker_Template_EN idioma inglés
MLOps_with_SageMaker_Template_EN idioma inglés
FabianPierrePeaJacob
 
Time series analysis & forecasting-Day1.pptx
Time series analysis & forecasting-Day1.pptxTime series analysis & forecasting-Day1.pptx
Time series analysis & forecasting-Day1.pptx
AsmaaMahmoud89
 
national income & related aggregates (1)(1).pptx
national income & related aggregates (1)(1).pptxnational income & related aggregates (1)(1).pptx
national income & related aggregates (1)(1).pptx
j2492618
 
Large Language Models: Diving into GPT, LLaMA, and More
Large Language Models: Diving into GPT, LLaMA, and MoreLarge Language Models: Diving into GPT, LLaMA, and More
Large Language Models: Diving into GPT, LLaMA, and More
nikhilkhanchandani1
 
Important JavaScript Concepts Every Developer Must Know
Important JavaScript Concepts Every Developer Must KnowImportant JavaScript Concepts Every Developer Must Know
Important JavaScript Concepts Every Developer Must Know
yashikanigam1
 
Taking a customer journey with process mining
Taking a customer journey with process miningTaking a customer journey with process mining
Taking a customer journey with process mining
Process mining Evangelist
 
Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...
Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...
Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...
Jayantilal Bhanushali
 
web-roadmap developer file information..
web-roadmap developer file information..web-roadmap developer file information..
web-roadmap developer file information..
pandeyarush01
 
Unit 2 - Unified Modeling Language (UML).pdf
Unit 2 - Unified Modeling Language (UML).pdfUnit 2 - Unified Modeling Language (UML).pdf
Unit 2 - Unified Modeling Language (UML).pdf
sixokak391
 
The challenges of using process mining in internal audit
The challenges of using process mining in internal auditThe challenges of using process mining in internal audit
The challenges of using process mining in internal audit
Process mining Evangelist
 
The-Future-is-Now-Information-Technology-Trends.pptx.pdf
The-Future-is-Now-Information-Technology-Trends.pptx.pdfThe-Future-is-Now-Information-Technology-Trends.pptx.pdf
The-Future-is-Now-Information-Technology-Trends.pptx.pdf
winnt04
 
Language Learning App Data Research by Globibo [2025]
Language Learning App Data Research by Globibo [2025]Language Learning App Data Research by Globibo [2025]
Language Learning App Data Research by Globibo [2025]
globibo
 
report (maam dona subject).pptxhsgwiswhs
report (maam dona subject).pptxhsgwiswhsreport (maam dona subject).pptxhsgwiswhs
report (maam dona subject).pptxhsgwiswhs
AngelPinedaTaguinod
 
DATA ANALYST and Techniques in Kochi Explore cutting-edge analytical skills ...
DATA ANALYST  and Techniques in Kochi Explore cutting-edge analytical skills ...DATA ANALYST  and Techniques in Kochi Explore cutting-edge analytical skills ...
DATA ANALYST and Techniques in Kochi Explore cutting-edge analytical skills ...
aacj102006
 
最新版澳洲西澳大利亚大学毕业证(UWA毕业证书)原版定制
最新版澳洲西澳大利亚大学毕业证(UWA毕业证书)原版定制最新版澳洲西澳大利亚大学毕业证(UWA毕业证书)原版定制
最新版澳洲西澳大利亚大学毕业证(UWA毕业证书)原版定制
Taqyea
 
Carbon Nanomaterials Market Size, Trends and Outlook 2024-2030
Carbon Nanomaterials Market Size, Trends and Outlook 2024-2030Carbon Nanomaterials Market Size, Trends and Outlook 2024-2030
Carbon Nanomaterials Market Size, Trends and Outlook 2024-2030
Industry Experts
 
presentacion.slideshare.informáticaJuridica..pptx
presentacion.slideshare.informáticaJuridica..pptxpresentacion.slideshare.informáticaJuridica..pptx
presentacion.slideshare.informáticaJuridica..pptx
GersonVillatoro4
 
From Data to Insight: How News Aggregator APIs Deliver Contextual Intelligence
From Data to Insight: How News Aggregator APIs Deliver Contextual IntelligenceFrom Data to Insight: How News Aggregator APIs Deliver Contextual Intelligence
From Data to Insight: How News Aggregator APIs Deliver Contextual Intelligence
Contify
 
Lesson-2.pptxjsjahajauahahagqiqhwjwjahaiq
Lesson-2.pptxjsjahajauahahagqiqhwjwjahaiqLesson-2.pptxjsjahajauahahagqiqhwjwjahaiq
Lesson-2.pptxjsjahajauahahagqiqhwjwjahaiq
AngelPinedaTaguinod
 
Introduction to Artificial Intelligence_ Lec 2
Introduction to Artificial Intelligence_ Lec 2Introduction to Artificial Intelligence_ Lec 2
Introduction to Artificial Intelligence_ Lec 2
Dalal2Ali
 
MLOps_with_SageMaker_Template_EN idioma inglés
MLOps_with_SageMaker_Template_EN idioma inglésMLOps_with_SageMaker_Template_EN idioma inglés
MLOps_with_SageMaker_Template_EN idioma inglés
FabianPierrePeaJacob
 
Time series analysis & forecasting-Day1.pptx
Time series analysis & forecasting-Day1.pptxTime series analysis & forecasting-Day1.pptx
Time series analysis & forecasting-Day1.pptx
AsmaaMahmoud89
 
national income & related aggregates (1)(1).pptx
national income & related aggregates (1)(1).pptxnational income & related aggregates (1)(1).pptx
national income & related aggregates (1)(1).pptx
j2492618
 
Large Language Models: Diving into GPT, LLaMA, and More
Large Language Models: Diving into GPT, LLaMA, and MoreLarge Language Models: Diving into GPT, LLaMA, and More
Large Language Models: Diving into GPT, LLaMA, and More
nikhilkhanchandani1
 
Important JavaScript Concepts Every Developer Must Know
Important JavaScript Concepts Every Developer Must KnowImportant JavaScript Concepts Every Developer Must Know
Important JavaScript Concepts Every Developer Must Know
yashikanigam1
 
Taking a customer journey with process mining
Taking a customer journey with process miningTaking a customer journey with process mining
Taking a customer journey with process mining
Process mining Evangelist
 
Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...
Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...
Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...
Jayantilal Bhanushali
 
web-roadmap developer file information..
web-roadmap developer file information..web-roadmap developer file information..
web-roadmap developer file information..
pandeyarush01
 
Unit 2 - Unified Modeling Language (UML).pdf
Unit 2 - Unified Modeling Language (UML).pdfUnit 2 - Unified Modeling Language (UML).pdf
Unit 2 - Unified Modeling Language (UML).pdf
sixokak391
 
The challenges of using process mining in internal audit
The challenges of using process mining in internal auditThe challenges of using process mining in internal audit
The challenges of using process mining in internal audit
Process mining Evangelist
 
The-Future-is-Now-Information-Technology-Trends.pptx.pdf
The-Future-is-Now-Information-Technology-Trends.pptx.pdfThe-Future-is-Now-Information-Technology-Trends.pptx.pdf
The-Future-is-Now-Information-Technology-Trends.pptx.pdf
winnt04
 
Language Learning App Data Research by Globibo [2025]
Language Learning App Data Research by Globibo [2025]Language Learning App Data Research by Globibo [2025]
Language Learning App Data Research by Globibo [2025]
globibo
 
report (maam dona subject).pptxhsgwiswhs
report (maam dona subject).pptxhsgwiswhsreport (maam dona subject).pptxhsgwiswhs
report (maam dona subject).pptxhsgwiswhs
AngelPinedaTaguinod
 
DATA ANALYST and Techniques in Kochi Explore cutting-edge analytical skills ...
DATA ANALYST  and Techniques in Kochi Explore cutting-edge analytical skills ...DATA ANALYST  and Techniques in Kochi Explore cutting-edge analytical skills ...
DATA ANALYST and Techniques in Kochi Explore cutting-edge analytical skills ...
aacj102006
 
最新版澳洲西澳大利亚大学毕业证(UWA毕业证书)原版定制
最新版澳洲西澳大利亚大学毕业证(UWA毕业证书)原版定制最新版澳洲西澳大利亚大学毕业证(UWA毕业证书)原版定制
最新版澳洲西澳大利亚大学毕业证(UWA毕业证书)原版定制
Taqyea
 
Carbon Nanomaterials Market Size, Trends and Outlook 2024-2030
Carbon Nanomaterials Market Size, Trends and Outlook 2024-2030Carbon Nanomaterials Market Size, Trends and Outlook 2024-2030
Carbon Nanomaterials Market Size, Trends and Outlook 2024-2030
Industry Experts
 
presentacion.slideshare.informáticaJuridica..pptx
presentacion.slideshare.informáticaJuridica..pptxpresentacion.slideshare.informáticaJuridica..pptx
presentacion.slideshare.informáticaJuridica..pptx
GersonVillatoro4
 
From Data to Insight: How News Aggregator APIs Deliver Contextual Intelligence
From Data to Insight: How News Aggregator APIs Deliver Contextual IntelligenceFrom Data to Insight: How News Aggregator APIs Deliver Contextual Intelligence
From Data to Insight: How News Aggregator APIs Deliver Contextual Intelligence
Contify
 
Ad

Visualising Multi-objective Data: From League Tables to Optimisers, and back

  • 1. Visualising Multi-objective Data: From League Tables to Optimisers, and back David Walker College of Engineering, Mathematics and Physical Sciences University of Exeter D.J.Walker@exeter.ac.uk 8th March 2017 – University of Plymouth David Walker Visualising Multi-objective Data 8th March 2017 1 / 17
  • 2. League Tables Times Good University Guide, 2009 8 KPIs – NSS, research quality, student-staff ratio, services and facilities spend, entry standards, completion, good honours, graduate prospects Uni NSS RAE Student staff ratio £/ student Entry Reqs. Compl- etion 1/ 2:1 Pros- pects Ox. 0.840 6.200 11.600 2884.000 502.000 98.600 90.100 83.900 Camb. - 6.500 12.200 2299.000 518.000 97.900 85.400 88.400 Imp. 0.760 5.800 10.400 3218.000 473.000 96.000 69.100 89.300 LSE 0.740 6.300 12.600 1562.000 469.000 96.900 75.200 87.700 Warw. 0.760 5.600 13.600 1881.000 448.000 96.700 79.400 74.900 UCL 0.760 5.500 9.100 1702.000 434.000 94.300 75.100 81.500 Dur. 0.780 5.200 15.400 1375.000 447.000 96.400 78.800 75.900 York 0.770 5.500 13.100 1313.000 423.000 95.200 74.700 70.500 Bristol 0.750 5.200 14.700 1535.000 430.000 95.800 78.400 81.500 King’s 0.770 4.700 11.900 1696.000 406.000 93.200 72.100 80.400 David Walker Visualising Multi-objective Data 8th March 2017 2 / 17
  • 3. Visualisation Visualisation is a useful alternative to presenting data in a table – human beings are well suited to understanding information visually 0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0 0.20.40.60.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 David Walker Visualising Multi-objective Data 8th March 2017 3 / 17
  • 4. Visualisation Visualisation is a useful alternative to presenting data in a table – human beings are well suited to understanding information visually 0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0 0.20.40.60.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 Unfortunately people can generally only think in three dimensions David Walker Visualising Multi-objective Data 8th March 2017 3 / 17
  • 5. High-dimensional Visualisation −1.5 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 1.5 f1,f2 f1,f3 f1,f4 f1,f5 f2,f3 f2,f4 f2,f5 f3,f4 f3,f5 f4,f5 f1 f2 f3 f4 f5 0.0 0.5 1.0 1.5 2.0 David Walker Visualising Multi-objective Data 8th March 2017 4 / 17
  • 6. Evolutionary Many-objective Optimisation Evolutionary algorithms generate solutions to many-objective optimisation problems – comprising M = 4 (or more) conflicting objectives The quality of a solution p is evaluated using a set of objective functions: y = (f1(p), . . . , fM(p)) Compare pairs of solutions using dominance: f(p) f(q) ⇔ ∀m(fm(p) ≤ fm(q)) ∧ ∃m(fm(p) < fm(q)) David Walker Visualising Multi-objective Data 8th March 2017 5 / 17
  • 7. Evolutionary Many-objective Optimisation Evolutionary algorithms generate solutions to many-objective optimisation problems – comprising M = 4 (or more) conflicting objectives The quality of a solution p is evaluated using a set of objective functions: y = (f1(p), . . . , fM(p)) Compare pairs of solutions using dominance: f(p) f(q) ⇔ ∀m(fm(p) ≤ fm(q)) ∧ ∃m(fm(p) < fm(q)) Visualise individuals according to their dominance relationships David Walker Visualising Multi-objective Data 8th March 2017 5 / 17
  • 8. Pareto Shells Non-dominated Sorting 1 Set k = 1 2 Identify all of the non-dominated individuals and assign them to shell k 3 Increment k 4 If individuals remain, return to step 2 Shell 1 Shell 4 Oxford St Andrews Warwick Durham York Bristol King's Leicester Nottingham Southampton Edinburgh Lancaster Glasgow Aberdeen Manchester Strathclyde Cambridge Imperial LSE UCL SOAS Sheffield East Anglia Cardiff Reading Liverpool Kent Sussex Essex Hull Royal Holloway Bradford Bedfordshire Abertay Bath Newcastle Surrey Keele Birmingham Aston Queen's Belfast Queen Mary Dundee Heriot-Watt City Robert Gordon N'ham Trent Bournemouth Brighton Napier UWIC Cardiff Stirling Brunel Ulster B'ham City Glamorgan Hertfordshire Roehampton Leeds Oxford Brookes Staffordshire Coventry Aberystwyth Bangor Swansea Goldsmiths Construct a graph Arrange individuals (nodes) into columns according to Pareto shell Place edges between individuals in adjacent shells where one dominates the other David Walker Visualising Multi-objective Data 8th March 2017 6 / 17
  • 9. University League Tables Colour nodes according to average rank Rank the individuals m times (once for each KPI) giving rim – the rank of individual i on KPI m Average these ranks ¯ri = 1 M M m=1 rim Shell 1 Shell 2 Shell 3 Shell 4 Shell 5 Shell 6Oxford (1) St Andrews (7) Warwick (4) Durham (9) York (11) Bristol (10) King's (8) Loughborough (24) Exeter (17) Leicester (16) Nottingham (12) Southampton (13) Edinburgh (15) Lancaster (21) Glasgow (17) Aberdeen (29) Manchester (22) Strathclyde (36) Cambridge (6) Imperial (2) LSE (5) UCL (3) SOAS (27) Sheffield (20) East Anglia (35) Cardiff (26) Reading (34) Liverpool (31) Kent (37) Sussex (38) Essex (43) Hull (49) Royal Holloway (33) Bradford (42) Bedfordshire (91) Abertay (99) Bath (14) Newcastle (19) Surrey (39) Keele (40) Birmingham (23) Aston (30) Queen's Belfast (25) Queen Mary (28) Dundee (41) Heriot-Watt (44) City (50) Robert Gordon (55) N'ham Trent (56) Bournemouth (59) Brighton (58) Napier (71) UWIC Cardiff (86) Stirling (47) Brunel (46) Ulster (52) B'ham City (60) Glamorgan (69) Hertfordshire (70) Roehampton (80) Leeds (32) Oxford Brookes (53) Staffordshire (72) Coventry (68) Aberystwyth (48) Bangor (54) Swansea (45) Goldsmiths (51) Portsmouth (60) Plymouth (57) Central Lancs (64) West England (63) Winchester (65) Glasgow Cal (66) Lampeter (81) Bath Spa (75) Northumbria (67) U. Arts (72) S'field Hallam (74) De Montfort (78) Canterbury CC (82) Sunderland (84) Salford (77) Chester (87) Huddersfield (89) York St John (95) Manchester Met (89) Leeds Met (93) Anglia Ruskin (103) Bucks New (105) QM Edinburgh (79) Chichester (76) Gloucestershire (62) Derby (89) West Scotland (100) Edge Hill (106) Cumbria (101) Teesside (91) Middlesex (98) East London (104) Worcester (85) Northampton (83) Kingston (94) Soton Solent (110) Wolverhampton (109) London S Bank (112) Liverpool JM (96) Greenwich (108) Thames Valley (113) Westminster (97) Bolton (111) UWCN (107) Lincoln (102) D. Walker, R. Everson and J. Fieldsend, Visualisation and Ordering of Many-objective Populations. In Proc. IEEE Congress on Evolutionary Computation (CEC 2010), pp3664–3671, 2010. David Walker Visualising Multi-objective Data 8th March 2017 7 / 17
  • 10. Water Quality Indicators D. Walker, D. Jakovljevic´c, D. Savi´c and M. Radovanovi´c, Multi-criterion Water Quality Analysis of the Danube River in Serbia: A Visualisation Approach. Water Research 79 (158–172), 2015. David Walker Visualising Multi-objective Data 8th March 2017 8 / 17
  • 11. Heatmaps A heatmap is a graphical representation of a dataset – rows indicate individuals and columns indicate KPIs “Warm” colours indicate large values “Cool” colours indicate small values 1 2 3 4 5 6 7 8 Criteria 0 20 40 60 80 100 Individuals 15 30 45 60 75 90 105 David Walker Visualising Multi-objective Data 8th March 2017 9 / 17
  • 12. Seriation of Heatmaps Reorder the rows of the heatmap so that similar individuals are placed together and patterns can be identified Seriation is a procedure for permuting items based on their similarity Aij = 1 − 1 M(N − 1)2 M m=1 (rim − rjm)2 g(π) = N i=1 N j=1 Aij (πi − πj )2 D. Walker, R. Everson and J. Fieldsend, Visualisation Mutually Non-dominating Solution Sets in Many-objective Optimisation. In IEEE Transactions on Evolutionary Computation 17(2)165–184, 2013. David Walker Visualising Multi-objective Data 8th March 2017 10 / 17
  • 13. Seriation of Heatmaps 0 20 40 60 80 100 0 20 40 60 80 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 David Walker Visualising Multi-objective Data 8th March 2017 11 / 17
  • 14. Seriation of Heatmaps 0 20 40 60 80 100 0 20 40 60 80 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 20 40 60 80 100 0 20 40 60 80 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 David Walker Visualising Multi-objective Data 8th March 2017 11 / 17
  • 15. Seriation of Heatmaps: University League Tables 1 2 3 4 5 6 7 8 Criteria 0 20 40 60 80 100 Individuals 15 30 45 60 75 90 105 David Walker Visualising Multi-objective Data 8th March 2017 12 / 17
  • 16. Seriation of Heatmaps: University League Tables 1 2 3 4 5 6 7 8 Criteria 0 20 40 60 80 100 Individuals 15 30 45 60 75 90 105 1 2 3 4 5 6 7 8 Criteria 72 68 49 5 53 9 Individuals 15 30 45 60 75 90 105 David Walker Visualising Multi-objective Data 8th March 2017 12 / 17
  • 17. Seriation of Heatmaps: Radar Waveform Design Seriate according to individuals then KPIs to reveal further information 1 2 3 4 5 6 7 8 9 Criteria 0 20 40 60 80 100 120 140 160 180 Individuals 20 40 60 80 100 120 140 160 180 200 1 2 3 4 5 6 7 8 9 Criteria 77 28 142 185 104 114 147 65 76 32 Individuals 20 40 60 80 100 120 140 160 180 200 David Walker Visualising Multi-objective Data 8th March 2017 13 / 17
  • 18. Seriation of Heatmaps: Radar Waveform Design Seriate according to individuals then KPIs to reveal further information 1 2 3 4 5 6 7 8 9 Criteria 0 20 40 60 80 100 120 140 160 180 Individuals 20 40 60 80 100 120 140 160 180 200 1 2 3 4 5 6 7 8 9 Criteria 77 28 142 185 104 114 147 65 76 32 Individuals 20 40 60 80 100 120 140 160 180 200 4 9 2 8 6 5 7 1 3 Criteria 77 28 142 185 104 114 147 65 76 32 Individuals 20 40 60 80 100 120 140 160 180 200 David Walker Visualising Multi-objective Data 8th March 2017 13 / 17
  • 19. Treemaps Visualise data represented as a tree using space to illustrate the importance of a node Additional degrees of freedom (e.g., colour) Many different algorithms for arranging a treemap Classification of the top 100 websites visited in 2010 (UK, France, Germany, Italy, Spain, Switzerland, Brazil, US and Australia) David Walker Visualising Multi-objective Data 8th March 2017 14 / 17
  • 20. Dominance trees Step 1: Pareto sorting Construct a partial ordering of individuals using Pareto sorting – this results in a graph Set 2: Prune edges using dominance distance Remove edges such that each node has exactly one parent node (retain the parent with the smallest dominance distance) and insert an artificial “root” using the global best A B C D E F D. Walker, Visualising Multi-objective Populations with Treemaps. In Proc. Genetic and Evolutionary Computation Conference (GECCO 2015) Companion Volume, 963–970, 2015. David Walker Visualising Multi-objective Data 8th March 2017 15 / 17
  • 21. Dominance trees Step 1: Pareto sorting Construct a partial ordering of individuals using Pareto sorting – this results in a graph Set 2: Prune edges using dominance distance Remove edges such that each node has exactly one parent node (retain the parent with the smallest dominance distance) and insert an artificial “root” using the global best A B C D E F nr A B C D E F D. Walker, Visualising Multi-objective Populations with Treemaps. In Proc. Genetic and Evolutionary Computation Conference (GECCO 2015) Companion Volume, 963–970, 2015. David Walker Visualising Multi-objective Data 8th March 2017 15 / 17
  • 22. Circular Treemaps Good University Guide Oxford SOAS Water Quality Analysis David Walker Visualising Multi-objective Data 8th March 2017 16 / 17
  • 23. Summary Performance data Performance data is ubiquitous University league tables, hospital performance, quality of life, water quality, optimisation. . . By visualising it we can better understand and make use of this data Visualisation Methods Pareto shells Seriation Treemaps David Walker Visualising Multi-objective Data 8th March 2017 17 / 17
  翻译: