SlideShare a Scribd company logo
Representing Data using
Static and Moving
Patterns
Colin Ware
UNH
Introduction




Finding patterns is key to information
visualization.
Expert knowledge is about understanding
patterns (Flynn effect)
Example Queries: We think by making
pattern queries on the world







Patterns showing groups?
Patterns showing structure?
When are patterns similar?
How should we organize information on the
screen?

What makes a pattern distinct?
Visual thinking colin_ware_lectures_2013_4_patterns
The dimensions of space
The “What” Channel


Objects, any
location

Patterns of patterns


Simple features
specific
locations
Patterns



Feature heirarchy (learned)
Contours and Regions (formed on the fly)
V1 processing

Ware:Vislab:CCOM
Texture segmentation (regions)
Textures and low level features
Interference based on spatial
frequency
Low level tuning based on feature
maps
A diagram with same principle
Field, Hayes and Hess
Contour finding mechanisms
Results

rt = -4.970 + 1.390spl + 0.01699con + 0.654cr + 0.295br

spl: Shortest path length
con: continuity
cr: crossings
br: branches

1 crossing adds .65 sec
100 deg. adds 1.7 sec
1 crossing == 38 deg.
Connectedness


Connectedness assumed in Continuity
a

c

b

d
Continuity


Visual entities tend to be smooth and
continuous
a

b

c
Continuity in Diagrams


Connections using smooth lines
a

b
The mechanisms
of line and contour

LOC – generalized contour finding

Ware:Vislab:CCOM
Closure


Closed contours to show set relationship

A
B
C
D
Extending the Euler diagram
Collins bubble sets
More Contours
a



b

Direct application
to vector field
display
How to add VS?
Asymmetry along path
Terminations
Some End-Stopped neurons
respond only with terminations
in the receptive field.

Halle’s “little stroaks” 1868
Modeling V1 and above
Dan Pineo
Vector Field
Visualization

Laidlaw
An optimization process (NSF
ITR)
Define task requirements
Advection path perceptio
Magnitude perception
Direction perception
Identify a visualization
Method and a paramaterization

Perceptually optimize for
Some sub-set of task
requirements

Streaklets:
A generalized
Flow vis technique
Human In the Loop

Characterize solutions

Actual solutions
Guidelines
Algorithms
Theory
Key idea


Almost all solutions can be described as being composed of
“streaklets”



Mag  color
Mag  luminance
Mag  size (length, width)
Mag  spacing
Orient  orient
Direction  arrow head
Direction  shape
Direction  lum change
Direction  transparency














Task: optimize streaklets. (How?)
1) Streaklet design optimized according to
theory – head to tail, direction cues
Modified Jobard and Lefer (Pete Mitchell)
2) Human in the loop optimization




Genetic algorithms (NO)
Domain experts with a lot of sliders
Designers with a lot of sliders
Visual thinking colin_ware_lectures_2013_4_patterns
Visual thinking colin_ware_lectures_2013_4_patterns
Visual thinking colin_ware_lectures_2013_4_patterns
Possibilities for Evaluation







Direction
Magnitude
Advection
Global pattern
Local pattern
Nodal points
Back to the feature hierarchy
Visual thinking colin_ware_lectures_2013_4_patterns
Scatter plots: comparing variables
Parallel coords vs
Generalized draftsmans plot
Parallel coord vs gen draftsmans


Parallel





Gen drafts




Each line is a data
Dimension
All pairwise
scatterplots.

Results suggest



Gen drafts is best
Clusters &
correlations
Holten and van Wijk
Symmetry


Symmetry create visual whole



Prefer Symmetry
Symmetry (cont.)


Using symmetry to show Similarities
between time series data
Bivariate maps (texture + color)
3 Channels: Color, Texture,
Motion
Compare to this!!
Scribble exercise
The Magic of Line and Contour:
Chameleon lines

Saul Steinberg

Santiago Coltrava

Ware:Vislab:CCOM
Ware:Vislab:CCOM
Patterns in Diagrams


Patterns applied
a

c

b

d
Visual Grammar of diagrams
Entities
represented by
Discrete objects
Attributes:
Shape
Colors
Textures

Relationships
represented by
Connecting lines
or nesting regions
Semantics of structure
Visual thinking colin_ware_lectures_2013_4_patterns
Treemaps and hierarchies




Treemaps use areas (size)
SP tree
Graph Trees use connectivity (structure)

a

b

a

b

c
f
d e g
h
i

www.smartmoney.com

a bc

i

de
f gh






Top down – Bottom up
Tunable attention to patterns
Contours and regions
+ Some are automatic
Basic to constructive thinking
Part II: Patterns in Motion




How can we use motion as a display
technique?
Gestalt principle of common fate
Motion as a visual attribute
(Common fate)


correlation between points:



frequency, phase or amplitude
Result: phase is most noticeable
Motion is Highly Contextual


Group moving objects in hierarchical
fashion.

a

b
Using Causality to display
causality


Michotte’s claim:
direct perception of
causality
A causal graph
Michotte’s Causality Perception

10
0%

D e t Lu c i g
i c a nhn
r
Dl ydl u c i g
ea e a n hn
N cua t
o a s liy

5%
0

10
0
T e( s c
i me .)
m

20
0
Visual Causal Vectors
Experiment



Evaluate VCVs
Symmetry about time of contact.
Results
Perceived effect

Cu a r lat n h
a s l e io s ip
p
1

S m re tio s i
o e la n hp
p
3

N r lat n h
o e io s ip
p
2

-1
.0

0
.5
-0
.5
0
.0
T ere tiv toco ta (se o d
im la e
n ct c n s)

1
.0
Motion Patterns that attract
attention (Lyn Bartram)






Motion is a good attention getter in
periphery
The optimal pattern may be things that
emerge, as opposed to simply move.
We may be able to perceive large field
patterns better when they are expressed
through motion (untested)
Anthropomorphic Form from
motion



Pattern of moving dots (captured from
actor body) – Johansson.
Attach meaning to movements (Heider
and Semmel)

a

b
Conclusion






Gestalt Laws are useful as design
guidelines.
Patterns should be present in luminance
Patterns should be the appropriate size
Motion is under-researched, but evidence
suggest its power.
Simple motion coding can be used to
express communication, causality,
urgency, happiness? (Braitenberg)
Visual thinking colin_ware_lectures_2013_4_patterns
Algorithms



Optimizing trace density (poisson disk)
Flexible methods for rendering (enhanced
particle systems).
Visual thinking colin_ware_lectures_2013_4_patterns
Figures and Grounds (cont.)


Rubin’s Vase


Competing recognition processes
Show particle solutions


Problem: how do we create an optimal
solution out of all of these possibilities?



Standard solution: do studies and
measure the effect of different
parameters.



Problem: Too many alternatives.
Closure (cont.)


Segmenting screen



Creating frame of reference
Position of objects judged based on enclosing
frame.
Laciness (Cavanaugh)
a



b

Layered data: be
careful with
composites of
textures
c

d
Transparency




Continuity is important in transparency
x < y < z or x > y > z
y < z < w or y > z > w

x

w

y

b
a

z
Visual thinking colin_ware_lectures_2013_4_patterns
Limitation due to Frame Rate
λ




Can only show
motions that
are limited by
the Frame
Rate.
We can
increase by
using additional
symbols.

a

b

c
Ad

More Related Content

Similar to Visual thinking colin_ware_lectures_2013_4_patterns (20)

CS221: HMM and Particle Filters
CS221: HMM and Particle FiltersCS221: HMM and Particle Filters
CS221: HMM and Particle Filters
zukun
 
AM1 feature extraction in neural network.pptx
AM1 feature extraction in neural network.pptxAM1 feature extraction in neural network.pptx
AM1 feature extraction in neural network.pptx
ncd6nfrwz8
 
Intro to data visualization
Intro to data visualizationIntro to data visualization
Intro to data visualization
Jan Aerts
 
Triangulating general intelligence and cortical microcircuits
Triangulating general intelligence and cortical microcircuitsTriangulating general intelligence and cortical microcircuits
Triangulating general intelligence and cortical microcircuits
Dileep George
 
A Psychophysical Investigation of Size as a Physical Variable
A Psychophysical Investigation of Size as a Physical VariableA Psychophysical Investigation of Size as a Physical Variable
A Psychophysical Investigation of Size as a Physical Variable
Yvonne Jansen
 
Presentation at SMI 2023
Presentation at SMI 2023Presentation at SMI 2023
Presentation at SMI 2023
Joaquim Jorge
 
Open Topology: A Toolkit for Brain Isosurface Correction-776
Open Topology: A Toolkit for Brain Isosurface Correction-776Open Topology: A Toolkit for Brain Isosurface Correction-776
Open Topology: A Toolkit for Brain Isosurface Correction-776
Kitware Kitware
 
A Diffusion Wavelet Approach For 3 D Model Matching
A Diffusion Wavelet Approach For 3 D Model MatchingA Diffusion Wavelet Approach For 3 D Model Matching
A Diffusion Wavelet Approach For 3 D Model Matching
rafi
 
A Visual Exploration of Distance, Documents, and Distributions
A Visual Exploration of Distance, Documents, and DistributionsA Visual Exploration of Distance, Documents, and Distributions
A Visual Exploration of Distance, Documents, and Distributions
Rebecca Bilbro
 
Words in Space - Rebecca Bilbro
Words in Space - Rebecca BilbroWords in Space - Rebecca Bilbro
Words in Space - Rebecca Bilbro
PyData
 
Person re-identification, PhD Day 2011
Person re-identification, PhD Day 2011Person re-identification, PhD Day 2011
Person re-identification, PhD Day 2011
Riccardo Satta
 
A beginner's guide to Style Transfer and recent trends
A beginner's guide to Style Transfer and recent trendsA beginner's guide to Style Transfer and recent trends
A beginner's guide to Style Transfer and recent trends
JaeJun Yoo
 
CNN for modeling sentence
CNN for modeling sentenceCNN for modeling sentence
CNN for modeling sentence
ANISH BHANUSHALI
 
Higher-order spectral graph clustering with motifs
Higher-order spectral graph clustering with motifsHigher-order spectral graph clustering with motifs
Higher-order spectral graph clustering with motifs
Austin Benson
 
feature matching and model fitting .pptx
feature matching and model fitting .pptxfeature matching and model fitting .pptx
feature matching and model fitting .pptx
demepa1337
 
A Simple Introduction to Neural Information Retrieval
A Simple Introduction to Neural Information RetrievalA Simple Introduction to Neural Information Retrieval
A Simple Introduction to Neural Information Retrieval
Bhaskar Mitra
 
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
Recurrence Quantification Analysis :Tutorial & application to eye-movement dataRecurrence Quantification Analysis :Tutorial & application to eye-movement data
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
Deb Aks
 
Unit II & III_uncovered topics.doc notes
Unit II & III_uncovered topics.doc notesUnit II & III_uncovered topics.doc notes
Unit II & III_uncovered topics.doc notes
smithashetty24
 
Visualization Methods Overview Presentation Cambridge University Eppler Septe...
Visualization Methods Overview Presentation Cambridge University Eppler Septe...Visualization Methods Overview Presentation Cambridge University Eppler Septe...
Visualization Methods Overview Presentation Cambridge University Eppler Septe...
epplerm
 
. An introduction to machine learning and probabilistic ...
. An introduction to machine learning and probabilistic .... An introduction to machine learning and probabilistic ...
. An introduction to machine learning and probabilistic ...
butest
 
CS221: HMM and Particle Filters
CS221: HMM and Particle FiltersCS221: HMM and Particle Filters
CS221: HMM and Particle Filters
zukun
 
AM1 feature extraction in neural network.pptx
AM1 feature extraction in neural network.pptxAM1 feature extraction in neural network.pptx
AM1 feature extraction in neural network.pptx
ncd6nfrwz8
 
Intro to data visualization
Intro to data visualizationIntro to data visualization
Intro to data visualization
Jan Aerts
 
Triangulating general intelligence and cortical microcircuits
Triangulating general intelligence and cortical microcircuitsTriangulating general intelligence and cortical microcircuits
Triangulating general intelligence and cortical microcircuits
Dileep George
 
A Psychophysical Investigation of Size as a Physical Variable
A Psychophysical Investigation of Size as a Physical VariableA Psychophysical Investigation of Size as a Physical Variable
A Psychophysical Investigation of Size as a Physical Variable
Yvonne Jansen
 
Presentation at SMI 2023
Presentation at SMI 2023Presentation at SMI 2023
Presentation at SMI 2023
Joaquim Jorge
 
Open Topology: A Toolkit for Brain Isosurface Correction-776
Open Topology: A Toolkit for Brain Isosurface Correction-776Open Topology: A Toolkit for Brain Isosurface Correction-776
Open Topology: A Toolkit for Brain Isosurface Correction-776
Kitware Kitware
 
A Diffusion Wavelet Approach For 3 D Model Matching
A Diffusion Wavelet Approach For 3 D Model MatchingA Diffusion Wavelet Approach For 3 D Model Matching
A Diffusion Wavelet Approach For 3 D Model Matching
rafi
 
A Visual Exploration of Distance, Documents, and Distributions
A Visual Exploration of Distance, Documents, and DistributionsA Visual Exploration of Distance, Documents, and Distributions
A Visual Exploration of Distance, Documents, and Distributions
Rebecca Bilbro
 
Words in Space - Rebecca Bilbro
Words in Space - Rebecca BilbroWords in Space - Rebecca Bilbro
Words in Space - Rebecca Bilbro
PyData
 
Person re-identification, PhD Day 2011
Person re-identification, PhD Day 2011Person re-identification, PhD Day 2011
Person re-identification, PhD Day 2011
Riccardo Satta
 
A beginner's guide to Style Transfer and recent trends
A beginner's guide to Style Transfer and recent trendsA beginner's guide to Style Transfer and recent trends
A beginner's guide to Style Transfer and recent trends
JaeJun Yoo
 
Higher-order spectral graph clustering with motifs
Higher-order spectral graph clustering with motifsHigher-order spectral graph clustering with motifs
Higher-order spectral graph clustering with motifs
Austin Benson
 
feature matching and model fitting .pptx
feature matching and model fitting .pptxfeature matching and model fitting .pptx
feature matching and model fitting .pptx
demepa1337
 
A Simple Introduction to Neural Information Retrieval
A Simple Introduction to Neural Information RetrievalA Simple Introduction to Neural Information Retrieval
A Simple Introduction to Neural Information Retrieval
Bhaskar Mitra
 
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
Recurrence Quantification Analysis :Tutorial & application to eye-movement dataRecurrence Quantification Analysis :Tutorial & application to eye-movement data
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
Deb Aks
 
Unit II & III_uncovered topics.doc notes
Unit II & III_uncovered topics.doc notesUnit II & III_uncovered topics.doc notes
Unit II & III_uncovered topics.doc notes
smithashetty24
 
Visualization Methods Overview Presentation Cambridge University Eppler Septe...
Visualization Methods Overview Presentation Cambridge University Eppler Septe...Visualization Methods Overview Presentation Cambridge University Eppler Septe...
Visualization Methods Overview Presentation Cambridge University Eppler Septe...
epplerm
 
. An introduction to machine learning and probabilistic ...
. An introduction to machine learning and probabilistic .... An introduction to machine learning and probabilistic ...
. An introduction to machine learning and probabilistic ...
butest
 

More from Elsa von Licy (20)

Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...
Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...
Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...
Elsa von Licy
 
Strategie Decisions Incertitude Actes conference fnege xerfi
Strategie Decisions Incertitude Actes conference fnege xerfiStrategie Decisions Incertitude Actes conference fnege xerfi
Strategie Decisions Incertitude Actes conference fnege xerfi
Elsa von Licy
 
Rainville pierre
Rainville pierreRainville pierre
Rainville pierre
Elsa von Licy
 
Neuropsychophysiologie
NeuropsychophysiologieNeuropsychophysiologie
Neuropsychophysiologie
Elsa von Licy
 
L agressivite en psychanalyse (21 pages 184 ko)
L agressivite en psychanalyse (21 pages   184 ko)L agressivite en psychanalyse (21 pages   184 ko)
L agressivite en psychanalyse (21 pages 184 ko)
Elsa von Licy
 
C1 clef pour_la_neuro
C1 clef pour_la_neuroC1 clef pour_la_neuro
C1 clef pour_la_neuro
Elsa von Licy
 
Hemostase polycop
Hemostase polycopHemostase polycop
Hemostase polycop
Elsa von Licy
 
Antiphilos
AntiphilosAntiphilos
Antiphilos
Elsa von Licy
 
Vuillez jean philippe_p01
Vuillez jean philippe_p01Vuillez jean philippe_p01
Vuillez jean philippe_p01
Elsa von Licy
 
Spr ue3.1 poly cours et exercices
Spr ue3.1   poly cours et exercicesSpr ue3.1   poly cours et exercices
Spr ue3.1 poly cours et exercices
Elsa von Licy
 
Plan de cours all l1 l2l3m1m2 p
Plan de cours all l1 l2l3m1m2 pPlan de cours all l1 l2l3m1m2 p
Plan de cours all l1 l2l3m1m2 p
Elsa von Licy
 
M2 bmc2007 cours01
M2 bmc2007 cours01M2 bmc2007 cours01
M2 bmc2007 cours01
Elsa von Licy
 
Bioph pharm 1an-viscosit-des_liquides_et_des_solutions
Bioph pharm 1an-viscosit-des_liquides_et_des_solutionsBioph pharm 1an-viscosit-des_liquides_et_des_solutions
Bioph pharm 1an-viscosit-des_liquides_et_des_solutions
Elsa von Licy
 
Poly histologie-et-embryologie-medicales
Poly histologie-et-embryologie-medicalesPoly histologie-et-embryologie-medicales
Poly histologie-et-embryologie-medicales
Elsa von Licy
 
Methodes travail etudiants
Methodes travail etudiantsMethodes travail etudiants
Methodes travail etudiants
Elsa von Licy
 
Atelier.etude.efficace
Atelier.etude.efficaceAtelier.etude.efficace
Atelier.etude.efficace
Elsa von Licy
 
There is no_such_thing_as_a_social_science_intro
There is no_such_thing_as_a_social_science_introThere is no_such_thing_as_a_social_science_intro
There is no_such_thing_as_a_social_science_intro
Elsa von Licy
 
Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...
Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...
Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...
Elsa von Licy
 
Strategie Decisions Incertitude Actes conference fnege xerfi
Strategie Decisions Incertitude Actes conference fnege xerfiStrategie Decisions Incertitude Actes conference fnege xerfi
Strategie Decisions Incertitude Actes conference fnege xerfi
Elsa von Licy
 
Neuropsychophysiologie
NeuropsychophysiologieNeuropsychophysiologie
Neuropsychophysiologie
Elsa von Licy
 
L agressivite en psychanalyse (21 pages 184 ko)
L agressivite en psychanalyse (21 pages   184 ko)L agressivite en psychanalyse (21 pages   184 ko)
L agressivite en psychanalyse (21 pages 184 ko)
Elsa von Licy
 
C1 clef pour_la_neuro
C1 clef pour_la_neuroC1 clef pour_la_neuro
C1 clef pour_la_neuro
Elsa von Licy
 
Vuillez jean philippe_p01
Vuillez jean philippe_p01Vuillez jean philippe_p01
Vuillez jean philippe_p01
Elsa von Licy
 
Spr ue3.1 poly cours et exercices
Spr ue3.1   poly cours et exercicesSpr ue3.1   poly cours et exercices
Spr ue3.1 poly cours et exercices
Elsa von Licy
 
Plan de cours all l1 l2l3m1m2 p
Plan de cours all l1 l2l3m1m2 pPlan de cours all l1 l2l3m1m2 p
Plan de cours all l1 l2l3m1m2 p
Elsa von Licy
 
Bioph pharm 1an-viscosit-des_liquides_et_des_solutions
Bioph pharm 1an-viscosit-des_liquides_et_des_solutionsBioph pharm 1an-viscosit-des_liquides_et_des_solutions
Bioph pharm 1an-viscosit-des_liquides_et_des_solutions
Elsa von Licy
 
Poly histologie-et-embryologie-medicales
Poly histologie-et-embryologie-medicalesPoly histologie-et-embryologie-medicales
Poly histologie-et-embryologie-medicales
Elsa von Licy
 
Methodes travail etudiants
Methodes travail etudiantsMethodes travail etudiants
Methodes travail etudiants
Elsa von Licy
 
Atelier.etude.efficace
Atelier.etude.efficaceAtelier.etude.efficace
Atelier.etude.efficace
Elsa von Licy
 
There is no_such_thing_as_a_social_science_intro
There is no_such_thing_as_a_social_science_introThere is no_such_thing_as_a_social_science_intro
There is no_such_thing_as_a_social_science_intro
Elsa von Licy
 
Ad

Recently uploaded (20)

Developing System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptxDeveloping System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptx
wondimagegndesta
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
CSUC - Consorci de Serveis Universitaris de Catalunya
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Developing System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptxDeveloping System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptx
wondimagegndesta
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Ad

Visual thinking colin_ware_lectures_2013_4_patterns

Editor's Notes

  • #19: That’s enough of the big picture. Lets now get back to the nitty gritty of how this may work.
  • #52: An attempt to interpret up-to-date perception and cognition for designers.
  翻译: