SlideShare a Scribd company logo
Triggering Patterns of Topology Changes
in Dynamic Graphs
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet
The 2014 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM)
Beijing, China, August 17-20, 2014
LABORATOIRE D’INFORMATIQUE EN IMAGE ET SYSTÈMES D’INFORMATION
UMR 5205 CNRS / INSA de Lyon / Université Claude Bernard Lyon 1
Context & motivation
Networks structurally change over time:
How to describe these dynamics?
a: 2
b: 0
c: 6
deg: 2
u5
u3
u4
u2
a: 7
b: 4
c: 5
deg: 1
a: 2
b: 1
c: 6
deg: 2
u1
u5
u3
u4
u2
a: 7
b: 5
c: 2
deg: 1
a: 5
b: 4
c: 5
deg: 2
u1
u5
u3
u4
u2
a: 8
b: 5
c: 1
deg: 4
a: 5
b: 5
c: 5
deg: 2
u1
u5
u3
u4
u2
a: 9
b: 6
c: 1
deg: 4
a: 6
b: 5
c: 2
deg: 2
u1
u5
u3
u4
u2
a: 9
b: 6
c: 0
deg: 4
a: 7
b: 5
c: 1
deg: 4
u1
u5
u3
u4
u2
1
a+ b+ c- deg+
a+ b+ c-
deg+
u1
a: 4
b: 1
c: 5
deg: 1
2 3 4 5 6
Intuition
Consider attributed graphs evolving through time
The variation of some attribute values (entities attributes) of a
node can lead in several cases to a structural change
(topological attributes)
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 2
Context & motivation
a: 2
b: 0
c: 6
deg: 2
u5
u3
u4
u2
a: 7
b: 4
c: 5
deg: 1
a: 2
b: 1
c: 6
deg: 2
u1
u5
u3
u4
u2
a: 7
b: 5
c: 2
deg: 1
a: 5
b: 4
c: 5
deg: 2
u1
u5
u3
u4
u2
a: 8
b: 5
c: 1
deg: 4
a: 5
b: 5
c: 5
deg: 2
u1
u5
u3
u4
u2
a: 9
b: 6
c: 1
deg: 4
a: 6
b: 5
c: 2
deg: 2
u1
u5
u3
u4
u2
a: 9
b: 6
c: 0
deg: 4
a: 7
b: 5
c: 1
deg: 4
u1
u5
u3
u4
u2
1
a+ b+ c- deg+
a+ b+ c-
deg+
u1
a: 4
b: 1
c: 5
deg: 1
2 3 4 5 6
A new pattern domain
a+ Updating his status more often
b+ giving positive opinions about others
c− receiving less negative opinions from the others
deg+ is often followed by an increase of user’s popularity
{a+,b+},{c+},{deg+} is a triggering pattern
A problem rooted in pattern mining and graph analysis
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 3
Triggering patterns
Outline
1 Triggering patterns
2 Method and algorithm
3 Experiments
4 Conclusion
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 4
Triggering patterns
Dynamic attributed graphs
Dynamic attributed graph
Let G = {G1,...,Gt} be a sequence of t static attributed graphs
Gi = (V,Ei,F) with T = {1,...,t} the set of timestamps
V the set of vertices
Ei the set of edges that connect vertices of V at time i ∈ T
(Ei ⊆ V ×V)
F the set of numerical attributes that map each vertex-time
pair to a real value: ∀f ∈ F, f : V ×T → R.
a: 2
b: 0
c: 6
deg: 2
u5
u3
u4
u2
a: 7
b: 4
c: 5
deg: 1
a: 2
b: 1
c: 6
deg: 2
u1
u5
u3
u4
u2
a: 7
b: 5
c: 2
deg: 1
a: 5
b: 4
c: 5
deg: 2
u1
u5
u3
u4
u2
a: 8
b: 5
c: 1
deg: 4
a: 5
b: 5
c: 5
deg: 2
u1
u5
u3
u4
u2
a: 9
b: 6
c: 1
deg: 4
a: 6
b: 5
c: 2
deg: 2
u1
u5
u3
u4
u2
a: 9
b: 6
c: 0
deg: 4
a: 7
b: 5
c: 1
deg: 4
u1
u5
u3
u4
u2
1
a+ b+ c- deg+
a+ b+ c-
deg+
u1
a: 4
b: 1
c: 5
deg: 1
2 3 4 5 6
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 5
Triggering patterns
Characterizing vertices behaviors
Vertex descriptive sequence
A discretization function gives a variation symbol to a
vertex/attribute/time triple, e.g.
discr(v,d,i) =



+ if d(v,i)−d(v,i−1) ≥ 2 and i > 1
− if d(v,i)−d(v,i−1) ≤ −2 and i > 1
/0 otherwise
The set of all variations for a vertex v at time i is an itemset
vars(v,i) = {ddiscr(v,d,i),∀d ∈ D}.
A vertex v is described by a sequence
δ(v) = vars(v,1),...,vars(v,t) .
∆ = {δ(v) | v ∈ V} is the set of all sequences.
Example
δ(u1) = {a+,b+},{c−},{deg+}
∆ = {δ(u1),δ(u2),δ(u3),δ(u4),δ(u5)}
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 6
Triggering patterns
Pattern domain
Triggering pattern
A triggering pattern is a sequence P = L,R
L is a sequence of sets of descriptor variations:
L = X1,...,Xk with ∀j ≤ k, Xj ⊆ (D×S)
R a single topological variation, R ∈ (M ×S)
Its support is SUPP(P,∆) = {v ∈ V | P δ(v)}
where p q means that p is a super-sequence of q
Example
L = {a+,b+},{c−}
R = {deg+}
SUPP( L,R ,∆) = {u1,u3}
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 7
Triggering patterns
Assessing the strength of a pattern?
Triggering pattern growth rate
Let P = L,R , we denote by ∆R ⊆ ∆ the set of vertex descriptive
sequences that contain R. The growth rate of P is given by:
GR(P,∆R
) =
|SUPP(L,∆R)|
|∆R|
×
|∆∆R|
|SUPP(L,∆∆R)|
G. Dong and J. Li.
Efficient mining of emerging patterns: Discovering trends
and differences.
In KDD, pages 43–52, 1999.
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 8
Triggering patterns
Assessing the diffusion potential of a pattern?
Coverage of a triggering pattern
Gaggr = (V,Eaggr) an aggregated graph of the dynamic graph
The coverage of a pattern P is defined by:
COV(P,∆,Gaggr) = SUPP(P,∆)∪{v ∈ V | ∃w ∈ SUPP(P,∆)s.t.(w,v) ∈ Eaggr}
It naturally follows that SUPP(P,∆) ⊆ COV(P,∆).
Example
ρ(P,∆) =
COV(P,∆,Gaggr)
SUPP(P,∆)
∈ [1,|V|]
To distinguish the patterns supported by a group of isolated
vertices (values close to 1) to the ones supported by very
connected vertices (much higher values than 1).
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 9
Triggering patterns
The problem
The triggering pattern mining problem
Given
a dynamic attributed graph G
a minimum growth rate threshold minGR
a minimum coverage threshold minCov
the problem is to find all triggering patterns P = L,R with
|COV(P,∆)| ≥ minCov
GR(P,∆R) ≥ minGR.
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 10
Method and algorithm
Outline
1 Triggering patterns
2 Method and algorithm
3 Experiments
4 Conclusion
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 11
Method and algorithm
Methodology
Dynamic attributed graph
↓ Choice of an appropriate discretization procedure
↓ Transformation
Database of vertex descriptive sequences
↓ Mining closed sequential patterns w.r.t. coverage
↓ Build triggering pattern candidates
Triggering pattern candidates
↓ Growth rate computation
Triggering patterns
Interpretation & vizualisation
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 12
Method and algorithm
TRIGAT
Algorithm TRIGAT
Require: G = {(V,Ei,F)}, minGr, minCov, Gaggr
Ensure: P the set of closed triggering patterns
∆ ← {δ(v)|v ∈ V}
I ← all covering 1-item sequences
Filter ∆ with only covering 1-item sequences
for all s ∈ I do
C ←TRIGAT_enum(s,∆|s,Gaggr,minCov)
end for
Eliminate non-closed sequences from C
C ← prefix closed patterns s,Xk ∈ C, s.t.Xk ∈ (M ×S)
for all P = s,Xk ∈ C do
Add P to P if GR( s,Xk ,∆Xk
) ≥ minGr
end for
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 13
Method and algorithm
TRIGAT
Procedure TRIGAT_ENUM
Require: s = S1,...,S ,∆|s,Gaggr, minCov
Ensure: C the set of covering sequences of prefix s
1: if not closed_based_prunnable(s) then
2: insert s in C
3: end if
4: Scan ∆|s, find every covering item α ∈ (D×S) such that s can be
extended to S1,...,S −1,{S ∪α} or S1,...,S ,α
5: for all valid α do
6: s ← S1,...,S −1,{S ∪α}
7: TRIGAT_enum(s,D|s,Gaggr,minCov)
8: s ← S1,...,S ,α
9: TRIGAT_enum(s,D|s,Gaggr,minCov)
10: end for
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 14
Experiments
Outline
1 Triggering patterns
2 Method and algorithm
3 Experiments
4 Conclusion
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 15
Experiments
Quantitative experiments
Running times
Distribution of support, GR, ...
Scalability
First qualitative assessments
Synchronous/asynchronous events
Dense/sparse yet covering
|V| |F| |T| |D| S I degsum densitysum
DBLP 2723 45 9 360 34.4 6.6 14.7 0.005
RITA1 220 8 30 30 16.3 5.1 15.7 0.07
RITA2 234 8 24 39 4.5 1.8 17 0.07
RITA3 280 6 8 87 28.3 6.5 15.9 0.05
del.icio.us 1867 121 5 400 31 1.6 11 0.003
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 16
Experiments
Quantitative results
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 17
Experiments
The DBLP dataset
Detecting asynchronous events
Scientific careers of researchers with different experiences
Rank Pattern Support Coverage Growth rate ρ
1 {closeness−
1 },{IEEETransKnowlDtEn+},{numCliques+
1 } → {numCliques−
1 } 15 578 87.4 38.5
2 {clustering++
1 ,degree++
1 },{Journal++,eigenvector++
2 } → {eigenvector++
3 } 31 546 71.6 17.6
3 {ICDE+,numCliques+
1 } → {numCliques−
1 } 22 606 64.1 27
4 {eigenvector++
1 ,degree++
1 },{VLDB++,degree++
2 } → {degree++
3 } 29 580 63.8 20
5 {eigenvector++
1 ,clustering++
1 },{Journal++,eigenvector++
2 } → {eigenvector++
3 } 36 619 59.3 17.19
6 {ACMTransDBSys+},{numCliques+
1 } → {numCliques−
1 } 20 547 58.3 27.35
7 {eigenvector++
1 },{Journal++,betweennes++
3 } → {betweennes++
4 } 20 587 58.4 29.35
8 {eigenvector++
1 },{VLDB++,degree++
2 } → {degree++
3 } 30 623 56.47 20.7
9 {SIGMOD−},{numCliques+
1 } → {numCliques−
1 } 32 754 53.3 23.56
10 {closeness−
1 },{SIGMOD−},{numCliques+
1 } → {numCliques−
1 } 18 552 52.4 30.6
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 18
Experiments
The R.I.T.A. dataset
Synchronous events
RITA1: daily in September 2001
{#Canceled+}{Degree−,Closeness−,NumCliques−,
Pagerank−,Betweennes−} → Degree+ with sup = 5, cov = 144
AIRPORTS THAT ABSORB THE TRAFFIC TWO DAYS AFTER
RITA2: monthly in (sept. 2000 ; Sept. 2002 )
{#Canceled+}{#Canceled−},{numCliques−,Betweeness+}
→ numCliques+ with sup = 8, cov = 61
A "BACK TO NORMAL" AROUND MARCH 2002
RITA3: Aug./Sept. 2005 (Katrina Hurricane)
THE MOST DISCRIMINANT APPEARS DURING KATRINA
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 19
Experiments
The del.ico.us dataset
What are the most triggering attributes?
how-to, tutorial, web design, visualization
“teaching triggering”
video, community
“social triggering”
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 20
Conclusion
Outline
1 Triggering patterns
2 Method and algorithm
3 Experiments
4 Conclusion
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 21
Conclusion
Conclusion
Triggering patterns in dynamic graphs
Sequences of variation of vertex attribute values that may
trigger topological changes
Closed sequential pattern mining
Growth rate: gives the discrimination power of a sequence
to explain a topological change
Coverage: tells us about the diffusion potential
Main challenge
Which aggregated graph to choose when computing the
coverage?
Patterns image can have (a)-synchronous sequences
2|T| aggregated graphs are possible!!
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 22
Triggering patterns of topology changes in dynamic attributed graphs
Ad

More Related Content

What's hot (20)

Bidimensionality
BidimensionalityBidimensionality
Bidimensionality
ASPAK2014
 
Comparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering modelsComparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering models
BigMC
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applications
Frank Nielsen
 
Muchtadi
MuchtadiMuchtadi
Muchtadi
Niranjan Patidar
 
Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)
Frank Nielsen
 
04 maths
04 maths04 maths
04 maths
Pankaj Prateek
 
Pattern-based classification of demographic sequences
Pattern-based classification of demographic sequencesPattern-based classification of demographic sequences
Pattern-based classification of demographic sequences
Dmitrii Ignatov
 
Overlap Layout Consensus assembly
Overlap Layout Consensus assemblyOverlap Layout Consensus assembly
Overlap Layout Consensus assembly
Zhuyi Xue
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
Frank Nielsen
 
Iterative Compression
Iterative CompressionIterative Compression
Iterative Compression
ASPAK2014
 
Divergence clustering
Divergence clusteringDivergence clustering
Divergence clustering
Frank Nielsen
 
Linear Classifiers
Linear ClassifiersLinear Classifiers
Linear Classifiers
Alexander Jung
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometry
Frank Nielsen
 
Treewidth and Applications
Treewidth and ApplicationsTreewidth and Applications
Treewidth and Applications
ASPAK2014
 
Talk iccf 19_ben_hammouda
Talk iccf 19_ben_hammoudaTalk iccf 19_ben_hammouda
Talk iccf 19_ben_hammouda
Chiheb Ben Hammouda
 
Aaex5 group2(中英夾雜)
Aaex5 group2(中英夾雜)Aaex5 group2(中英夾雜)
Aaex5 group2(中英夾雜)
Shiang-Yun Yang
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
Alexander Litvinenko
 
report
reportreport
report
Sirui Zhang
 
1452 86301000013 m
1452 86301000013 m1452 86301000013 m
1452 86301000013 m
Praveen Kumar
 
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Chiheb Ben Hammouda
 
Bidimensionality
BidimensionalityBidimensionality
Bidimensionality
ASPAK2014
 
Comparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering modelsComparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering models
BigMC
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applications
Frank Nielsen
 
Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)
Frank Nielsen
 
Pattern-based classification of demographic sequences
Pattern-based classification of demographic sequencesPattern-based classification of demographic sequences
Pattern-based classification of demographic sequences
Dmitrii Ignatov
 
Overlap Layout Consensus assembly
Overlap Layout Consensus assemblyOverlap Layout Consensus assembly
Overlap Layout Consensus assembly
Zhuyi Xue
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
Frank Nielsen
 
Iterative Compression
Iterative CompressionIterative Compression
Iterative Compression
ASPAK2014
 
Divergence clustering
Divergence clusteringDivergence clustering
Divergence clustering
Frank Nielsen
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometry
Frank Nielsen
 
Treewidth and Applications
Treewidth and ApplicationsTreewidth and Applications
Treewidth and Applications
ASPAK2014
 
Aaex5 group2(中英夾雜)
Aaex5 group2(中英夾雜)Aaex5 group2(中英夾雜)
Aaex5 group2(中英夾雜)
Shiang-Yun Yang
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
Alexander Litvinenko
 
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Chiheb Ben Hammouda
 

Viewers also liked (15)

Mobile Websites for Dummies
Mobile Websites for DummiesMobile Websites for Dummies
Mobile Websites for Dummies
techbrarian
 
On the Mining of Numerical Data with Formal Concept Analysis
On the Mining of Numerical Data with Formal Concept AnalysisOn the Mining of Numerical Data with Formal Concept Analysis
On the Mining of Numerical Data with Formal Concept Analysis
INSA Lyon - L'Institut National des Sciences Appliquées de Lyon
 
Watch me playing, I am a professional. A first study on video game live strea...
Watch me playing, I am a professional. A first study on video game live strea...Watch me playing, I am a professional. A first study on video game live strea...
Watch me playing, I am a professional. A first study on video game live strea...
INSA Lyon - L'Institut National des Sciences Appliquées de Lyon
 
Characterizing and mining numerical patterns, an FCA point of view
Characterizing and mining numerical patterns, an FCA point of viewCharacterizing and mining numerical patterns, an FCA point of view
Characterizing and mining numerical patterns, an FCA point of view
INSA Lyon - L'Institut National des Sciences Appliquées de Lyon
 
Discovering openings and their balance in competitive RTS gaming. An approach...
Discovering openings and their balance in competitive RTS gaming. An approach...Discovering openings and their balance in competitive RTS gaming. An approach...
Discovering openings and their balance in competitive RTS gaming. An approach...
INSA Lyon - L'Institut National des Sciences Appliquées de Lyon
 
Optimizing your presence online
Optimizing your presence onlineOptimizing your presence online
Optimizing your presence online
techbrarian
 
Extracting biclusters of similar values with Triadic Concept Analysis
Extracting biclusters of similar values with Triadic Concept AnalysisExtracting biclusters of similar values with Triadic Concept Analysis
Extracting biclusters of similar values with Triadic Concept Analysis
INSA Lyon - L'Institut National des Sciences Appliquées de Lyon
 
Your Library on the Go: Catching Up with Your Mobile Patrons
Your Library on the Go: Catching Up with Your Mobile PatronsYour Library on the Go: Catching Up with Your Mobile Patrons
Your Library on the Go: Catching Up with Your Mobile Patrons
techbrarian
 
Interval Pattern Structures: An introdution
Interval Pattern Structures: An introdutionInterval Pattern Structures: An introdution
Interval Pattern Structures: An introdution
INSA Lyon - L'Institut National des Sciences Appliquées de Lyon
 
Trabajo de diapositiva perez
Trabajo de diapositiva perezTrabajo de diapositiva perez
Trabajo de diapositiva perez
yohanperez
 
Foc sos lic_suspforminstr
Foc sos lic_suspforminstrFoc sos lic_suspforminstr
Foc sos lic_suspforminstr
Pat46
 
Business Transformation - Our Journey by Veronique Ingram, ITSA
Business Transformation - Our Journey by Veronique Ingram, ITSABusiness Transformation - Our Journey by Veronique Ingram, ITSA
Business Transformation - Our Journey by Veronique Ingram, ITSA
itsa-au
 
The little prince
The little princeThe little prince
The little prince
Lauritha MoOriitha
 
Mobile Websites for Dummies
Mobile Websites for DummiesMobile Websites for Dummies
Mobile Websites for Dummies
techbrarian
 
Optimizing your presence online
Optimizing your presence onlineOptimizing your presence online
Optimizing your presence online
techbrarian
 
Your Library on the Go: Catching Up with Your Mobile Patrons
Your Library on the Go: Catching Up with Your Mobile PatronsYour Library on the Go: Catching Up with Your Mobile Patrons
Your Library on the Go: Catching Up with Your Mobile Patrons
techbrarian
 
Trabajo de diapositiva perez
Trabajo de diapositiva perezTrabajo de diapositiva perez
Trabajo de diapositiva perez
yohanperez
 
Foc sos lic_suspforminstr
Foc sos lic_suspforminstrFoc sos lic_suspforminstr
Foc sos lic_suspforminstr
Pat46
 
Business Transformation - Our Journey by Veronique Ingram, ITSA
Business Transformation - Our Journey by Veronique Ingram, ITSABusiness Transformation - Our Journey by Veronique Ingram, ITSA
Business Transformation - Our Journey by Veronique Ingram, ITSA
itsa-au
 
Ad

Similar to Triggering patterns of topology changes in dynamic attributed graphs (20)

parameterized complexity for graph Motif
parameterized complexity for graph Motifparameterized complexity for graph Motif
parameterized complexity for graph Motif
AMR koura
 
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Chiheb Ben Hammouda
 
Codes and Isogenies
Codes and IsogeniesCodes and Isogenies
Codes and Isogenies
Priyanka Aash
 
A kernel-free particle method: Smile Problem Resolved
A kernel-free particle method: Smile Problem ResolvedA kernel-free particle method: Smile Problem Resolved
A kernel-free particle method: Smile Problem Resolved
Kaiju Capital Management
 
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian ProcessesAccelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Matt Moores
 
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdfreservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
RTEFGDFGJU
 
Inria Tech Talk - La classification de données complexes avec MASSICCC
Inria Tech Talk - La classification de données complexes avec MASSICCCInria Tech Talk - La classification de données complexes avec MASSICCC
Inria Tech Talk - La classification de données complexes avec MASSICCC
Stéphanie Roger
 
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
Matt Moores
 
An Application of Gd-Metric Spaces and Metric Dimension of Graphs
An Application of Gd-Metric Spaces and Metric Dimension of GraphsAn Application of Gd-Metric Spaces and Metric Dimension of Graphs
An Application of Gd-Metric Spaces and Metric Dimension of Graphs
GiselleginaGloria
 
Security of Artificial Intelligence
Security of Artificial IntelligenceSecurity of Artificial Intelligence
Security of Artificial Intelligence
Federico Cerutti
 
Numerical Smoothing and Hierarchical Approximations for E cient Option Pricin...
Numerical Smoothing and Hierarchical Approximations for E cient Option Pricin...Numerical Smoothing and Hierarchical Approximations for E cient Option Pricin...
Numerical Smoothing and Hierarchical Approximations for E cient Option Pricin...
Chiheb Ben Hammouda
 
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
Laurent Duval
 
ICCF_2022_talk.pdf
ICCF_2022_talk.pdfICCF_2022_talk.pdf
ICCF_2022_talk.pdf
Chiheb Ben Hammouda
 
SIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithmsSIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithms
Jagadeeswaran Rathinavel
 
CDT 22 slides.pdf
CDT 22 slides.pdfCDT 22 slides.pdf
CDT 22 slides.pdf
Christian Robert
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimation
Alexander Litvinenko
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
Christian Robert
 
R Language Introduction
R Language IntroductionR Language Introduction
R Language Introduction
Khaled Al-Shamaa
 
PMED Transition Workshop - A Bayesian Model for Joint Longitudinal and Surviv...
PMED Transition Workshop - A Bayesian Model for Joint Longitudinal and Surviv...PMED Transition Workshop - A Bayesian Model for Joint Longitudinal and Surviv...
PMED Transition Workshop - A Bayesian Model for Joint Longitudinal and Surviv...
The Statistical and Applied Mathematical Sciences Institute
 
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in GraphsAlgorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
IJERA Editor
 
parameterized complexity for graph Motif
parameterized complexity for graph Motifparameterized complexity for graph Motif
parameterized complexity for graph Motif
AMR koura
 
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Chiheb Ben Hammouda
 
A kernel-free particle method: Smile Problem Resolved
A kernel-free particle method: Smile Problem ResolvedA kernel-free particle method: Smile Problem Resolved
A kernel-free particle method: Smile Problem Resolved
Kaiju Capital Management
 
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian ProcessesAccelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Matt Moores
 
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdfreservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
RTEFGDFGJU
 
Inria Tech Talk - La classification de données complexes avec MASSICCC
Inria Tech Talk - La classification de données complexes avec MASSICCCInria Tech Talk - La classification de données complexes avec MASSICCC
Inria Tech Talk - La classification de données complexes avec MASSICCC
Stéphanie Roger
 
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
Matt Moores
 
An Application of Gd-Metric Spaces and Metric Dimension of Graphs
An Application of Gd-Metric Spaces and Metric Dimension of GraphsAn Application of Gd-Metric Spaces and Metric Dimension of Graphs
An Application of Gd-Metric Spaces and Metric Dimension of Graphs
GiselleginaGloria
 
Security of Artificial Intelligence
Security of Artificial IntelligenceSecurity of Artificial Intelligence
Security of Artificial Intelligence
Federico Cerutti
 
Numerical Smoothing and Hierarchical Approximations for E cient Option Pricin...
Numerical Smoothing and Hierarchical Approximations for E cient Option Pricin...Numerical Smoothing and Hierarchical Approximations for E cient Option Pricin...
Numerical Smoothing and Hierarchical Approximations for E cient Option Pricin...
Chiheb Ben Hammouda
 
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
Laurent Duval
 
SIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithmsSIAM - Minisymposium on Guaranteed numerical algorithms
SIAM - Minisymposium on Guaranteed numerical algorithms
Jagadeeswaran Rathinavel
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimation
Alexander Litvinenko
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
Christian Robert
 
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in GraphsAlgorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
IJERA Editor
 
Ad

Recently uploaded (20)

Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...
Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...
Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...
vahanp
 
8. Gait cycle and it's determinants completely
8. Gait cycle and it's determinants completely8. Gait cycle and it's determinants completely
8. Gait cycle and it's determinants completely
Mominaakram4
 
physics of renewable energy sources .pptx
physics of renewable energy sources  .pptxphysics of renewable energy sources  .pptx
physics of renewable energy sources .pptx
zaramunir6
 
Best SCIENCE Quiz IIT Bomaby Anurag sharma
Best SCIENCE Quiz IIT Bomaby Anurag sharmaBest SCIENCE Quiz IIT Bomaby Anurag sharma
Best SCIENCE Quiz IIT Bomaby Anurag sharma
sudhasharma297367
 
Anthelmintics Medicinal Chemistry III PPT
Anthelmintics Medicinal Chemistry III PPTAnthelmintics Medicinal Chemistry III PPT
Anthelmintics Medicinal Chemistry III PPT
HRUTUJA WAGH
 
2. peptic ulcer (1) (1) for Pharm D .pptx
2. peptic ulcer (1) (1) for Pharm D .pptx2. peptic ulcer (1) (1) for Pharm D .pptx
2. peptic ulcer (1) (1) for Pharm D .pptx
fafyfskhan251kmf
 
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Professional Content Writing's
 
Macrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.pptMacrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.ppt
HRUTUJA WAGH
 
earthquake and faults .pdf vtrvygbgbyggbybgybgyb
earthquake and faults .pdf vtrvygbgbyggbybgybgybearthquake and faults .pdf vtrvygbgbyggbybgybgyb
earthquake and faults .pdf vtrvygbgbyggbybgybgyb
KRISELJASMINOPEA
 
university of arizona ~ favor's college candidate project.pptx
university of arizona ~ favor's college candidate project.pptxuniversity of arizona ~ favor's college candidate project.pptx
university of arizona ~ favor's college candidate project.pptx
favoranamelechi107
 
Micro-grooved zein macro-whiskers for large-scale proliferation and different...
Micro-grooved zein macro-whiskers for large-scale proliferation and different...Micro-grooved zein macro-whiskers for large-scale proliferation and different...
Micro-grooved zein macro-whiskers for large-scale proliferation and different...
mdokmeci
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
Chemistry of Warfare (Chemical weapons in warfare: An in-depth analysis of cl...
Chemistry of Warfare (Chemical weapons in warfare: An in-depth analysis of cl...Chemistry of Warfare (Chemical weapons in warfare: An in-depth analysis of cl...
Chemistry of Warfare (Chemical weapons in warfare: An in-depth analysis of cl...
Professional Content Writing's
 
MC III Prodrug Medicinal Chemistry III PPT
MC III Prodrug Medicinal Chemistry III PPTMC III Prodrug Medicinal Chemistry III PPT
MC III Prodrug Medicinal Chemistry III PPT
HRUTUJA WAGH
 
Phytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and ManagementpptxPhytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and Managementpptx
Dr Showkat Ahmad Wani
 
Mycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes FungiMycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes Fungi
SAYANTANMALLICK5
 
ANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC IIIANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC III
HRUTUJA WAGH
 
Electroencephalogram_ wave components_Aignificancr
Electroencephalogram_ wave components_AignificancrElectroencephalogram_ wave components_Aignificancr
Electroencephalogram_ wave components_Aignificancr
klynct
 
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
Sérgio Sacani
 
cdna synthesis and construction of gene libraries.pptx
cdna synthesis and construction of gene libraries.pptxcdna synthesis and construction of gene libraries.pptx
cdna synthesis and construction of gene libraries.pptx
jatinjadon777
 
Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...
Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...
Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...
vahanp
 
8. Gait cycle and it's determinants completely
8. Gait cycle and it's determinants completely8. Gait cycle and it's determinants completely
8. Gait cycle and it's determinants completely
Mominaakram4
 
physics of renewable energy sources .pptx
physics of renewable energy sources  .pptxphysics of renewable energy sources  .pptx
physics of renewable energy sources .pptx
zaramunir6
 
Best SCIENCE Quiz IIT Bomaby Anurag sharma
Best SCIENCE Quiz IIT Bomaby Anurag sharmaBest SCIENCE Quiz IIT Bomaby Anurag sharma
Best SCIENCE Quiz IIT Bomaby Anurag sharma
sudhasharma297367
 
Anthelmintics Medicinal Chemistry III PPT
Anthelmintics Medicinal Chemistry III PPTAnthelmintics Medicinal Chemistry III PPT
Anthelmintics Medicinal Chemistry III PPT
HRUTUJA WAGH
 
2. peptic ulcer (1) (1) for Pharm D .pptx
2. peptic ulcer (1) (1) for Pharm D .pptx2. peptic ulcer (1) (1) for Pharm D .pptx
2. peptic ulcer (1) (1) for Pharm D .pptx
fafyfskhan251kmf
 
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Professional Content Writing's
 
Macrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.pptMacrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.ppt
HRUTUJA WAGH
 
earthquake and faults .pdf vtrvygbgbyggbybgybgyb
earthquake and faults .pdf vtrvygbgbyggbybgybgybearthquake and faults .pdf vtrvygbgbyggbybgybgyb
earthquake and faults .pdf vtrvygbgbyggbybgybgyb
KRISELJASMINOPEA
 
university of arizona ~ favor's college candidate project.pptx
university of arizona ~ favor's college candidate project.pptxuniversity of arizona ~ favor's college candidate project.pptx
university of arizona ~ favor's college candidate project.pptx
favoranamelechi107
 
Micro-grooved zein macro-whiskers for large-scale proliferation and different...
Micro-grooved zein macro-whiskers for large-scale proliferation and different...Micro-grooved zein macro-whiskers for large-scale proliferation and different...
Micro-grooved zein macro-whiskers for large-scale proliferation and different...
mdokmeci
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
Chemistry of Warfare (Chemical weapons in warfare: An in-depth analysis of cl...
Chemistry of Warfare (Chemical weapons in warfare: An in-depth analysis of cl...Chemistry of Warfare (Chemical weapons in warfare: An in-depth analysis of cl...
Chemistry of Warfare (Chemical weapons in warfare: An in-depth analysis of cl...
Professional Content Writing's
 
MC III Prodrug Medicinal Chemistry III PPT
MC III Prodrug Medicinal Chemistry III PPTMC III Prodrug Medicinal Chemistry III PPT
MC III Prodrug Medicinal Chemistry III PPT
HRUTUJA WAGH
 
Phytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and ManagementpptxPhytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and Managementpptx
Dr Showkat Ahmad Wani
 
Mycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes FungiMycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes Fungi
SAYANTANMALLICK5
 
ANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC IIIANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC III
HRUTUJA WAGH
 
Electroencephalogram_ wave components_Aignificancr
Electroencephalogram_ wave components_AignificancrElectroencephalogram_ wave components_Aignificancr
Electroencephalogram_ wave components_Aignificancr
klynct
 
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
Sérgio Sacani
 
cdna synthesis and construction of gene libraries.pptx
cdna synthesis and construction of gene libraries.pptxcdna synthesis and construction of gene libraries.pptx
cdna synthesis and construction of gene libraries.pptx
jatinjadon777
 

Triggering patterns of topology changes in dynamic attributed graphs

  • 1. Triggering Patterns of Topology Changes in Dynamic Graphs M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet The 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) Beijing, China, August 17-20, 2014 LABORATOIRE D’INFORMATIQUE EN IMAGE ET SYSTÈMES D’INFORMATION UMR 5205 CNRS / INSA de Lyon / Université Claude Bernard Lyon 1
  • 2. Context & motivation Networks structurally change over time: How to describe these dynamics? a: 2 b: 0 c: 6 deg: 2 u5 u3 u4 u2 a: 7 b: 4 c: 5 deg: 1 a: 2 b: 1 c: 6 deg: 2 u1 u5 u3 u4 u2 a: 7 b: 5 c: 2 deg: 1 a: 5 b: 4 c: 5 deg: 2 u1 u5 u3 u4 u2 a: 8 b: 5 c: 1 deg: 4 a: 5 b: 5 c: 5 deg: 2 u1 u5 u3 u4 u2 a: 9 b: 6 c: 1 deg: 4 a: 6 b: 5 c: 2 deg: 2 u1 u5 u3 u4 u2 a: 9 b: 6 c: 0 deg: 4 a: 7 b: 5 c: 1 deg: 4 u1 u5 u3 u4 u2 1 a+ b+ c- deg+ a+ b+ c- deg+ u1 a: 4 b: 1 c: 5 deg: 1 2 3 4 5 6 Intuition Consider attributed graphs evolving through time The variation of some attribute values (entities attributes) of a node can lead in several cases to a structural change (topological attributes) M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 2
  • 3. Context & motivation a: 2 b: 0 c: 6 deg: 2 u5 u3 u4 u2 a: 7 b: 4 c: 5 deg: 1 a: 2 b: 1 c: 6 deg: 2 u1 u5 u3 u4 u2 a: 7 b: 5 c: 2 deg: 1 a: 5 b: 4 c: 5 deg: 2 u1 u5 u3 u4 u2 a: 8 b: 5 c: 1 deg: 4 a: 5 b: 5 c: 5 deg: 2 u1 u5 u3 u4 u2 a: 9 b: 6 c: 1 deg: 4 a: 6 b: 5 c: 2 deg: 2 u1 u5 u3 u4 u2 a: 9 b: 6 c: 0 deg: 4 a: 7 b: 5 c: 1 deg: 4 u1 u5 u3 u4 u2 1 a+ b+ c- deg+ a+ b+ c- deg+ u1 a: 4 b: 1 c: 5 deg: 1 2 3 4 5 6 A new pattern domain a+ Updating his status more often b+ giving positive opinions about others c− receiving less negative opinions from the others deg+ is often followed by an increase of user’s popularity {a+,b+},{c+},{deg+} is a triggering pattern A problem rooted in pattern mining and graph analysis M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 3
  • 4. Triggering patterns Outline 1 Triggering patterns 2 Method and algorithm 3 Experiments 4 Conclusion M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 4
  • 5. Triggering patterns Dynamic attributed graphs Dynamic attributed graph Let G = {G1,...,Gt} be a sequence of t static attributed graphs Gi = (V,Ei,F) with T = {1,...,t} the set of timestamps V the set of vertices Ei the set of edges that connect vertices of V at time i ∈ T (Ei ⊆ V ×V) F the set of numerical attributes that map each vertex-time pair to a real value: ∀f ∈ F, f : V ×T → R. a: 2 b: 0 c: 6 deg: 2 u5 u3 u4 u2 a: 7 b: 4 c: 5 deg: 1 a: 2 b: 1 c: 6 deg: 2 u1 u5 u3 u4 u2 a: 7 b: 5 c: 2 deg: 1 a: 5 b: 4 c: 5 deg: 2 u1 u5 u3 u4 u2 a: 8 b: 5 c: 1 deg: 4 a: 5 b: 5 c: 5 deg: 2 u1 u5 u3 u4 u2 a: 9 b: 6 c: 1 deg: 4 a: 6 b: 5 c: 2 deg: 2 u1 u5 u3 u4 u2 a: 9 b: 6 c: 0 deg: 4 a: 7 b: 5 c: 1 deg: 4 u1 u5 u3 u4 u2 1 a+ b+ c- deg+ a+ b+ c- deg+ u1 a: 4 b: 1 c: 5 deg: 1 2 3 4 5 6 M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 5
  • 6. Triggering patterns Characterizing vertices behaviors Vertex descriptive sequence A discretization function gives a variation symbol to a vertex/attribute/time triple, e.g. discr(v,d,i) =    + if d(v,i)−d(v,i−1) ≥ 2 and i > 1 − if d(v,i)−d(v,i−1) ≤ −2 and i > 1 /0 otherwise The set of all variations for a vertex v at time i is an itemset vars(v,i) = {ddiscr(v,d,i),∀d ∈ D}. A vertex v is described by a sequence δ(v) = vars(v,1),...,vars(v,t) . ∆ = {δ(v) | v ∈ V} is the set of all sequences. Example δ(u1) = {a+,b+},{c−},{deg+} ∆ = {δ(u1),δ(u2),δ(u3),δ(u4),δ(u5)} M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 6
  • 7. Triggering patterns Pattern domain Triggering pattern A triggering pattern is a sequence P = L,R L is a sequence of sets of descriptor variations: L = X1,...,Xk with ∀j ≤ k, Xj ⊆ (D×S) R a single topological variation, R ∈ (M ×S) Its support is SUPP(P,∆) = {v ∈ V | P δ(v)} where p q means that p is a super-sequence of q Example L = {a+,b+},{c−} R = {deg+} SUPP( L,R ,∆) = {u1,u3} M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 7
  • 8. Triggering patterns Assessing the strength of a pattern? Triggering pattern growth rate Let P = L,R , we denote by ∆R ⊆ ∆ the set of vertex descriptive sequences that contain R. The growth rate of P is given by: GR(P,∆R ) = |SUPP(L,∆R)| |∆R| × |∆∆R| |SUPP(L,∆∆R)| G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. In KDD, pages 43–52, 1999. M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 8
  • 9. Triggering patterns Assessing the diffusion potential of a pattern? Coverage of a triggering pattern Gaggr = (V,Eaggr) an aggregated graph of the dynamic graph The coverage of a pattern P is defined by: COV(P,∆,Gaggr) = SUPP(P,∆)∪{v ∈ V | ∃w ∈ SUPP(P,∆)s.t.(w,v) ∈ Eaggr} It naturally follows that SUPP(P,∆) ⊆ COV(P,∆). Example ρ(P,∆) = COV(P,∆,Gaggr) SUPP(P,∆) ∈ [1,|V|] To distinguish the patterns supported by a group of isolated vertices (values close to 1) to the ones supported by very connected vertices (much higher values than 1). M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 9
  • 10. Triggering patterns The problem The triggering pattern mining problem Given a dynamic attributed graph G a minimum growth rate threshold minGR a minimum coverage threshold minCov the problem is to find all triggering patterns P = L,R with |COV(P,∆)| ≥ minCov GR(P,∆R) ≥ minGR. M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 10
  • 11. Method and algorithm Outline 1 Triggering patterns 2 Method and algorithm 3 Experiments 4 Conclusion M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 11
  • 12. Method and algorithm Methodology Dynamic attributed graph ↓ Choice of an appropriate discretization procedure ↓ Transformation Database of vertex descriptive sequences ↓ Mining closed sequential patterns w.r.t. coverage ↓ Build triggering pattern candidates Triggering pattern candidates ↓ Growth rate computation Triggering patterns Interpretation & vizualisation M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 12
  • 13. Method and algorithm TRIGAT Algorithm TRIGAT Require: G = {(V,Ei,F)}, minGr, minCov, Gaggr Ensure: P the set of closed triggering patterns ∆ ← {δ(v)|v ∈ V} I ← all covering 1-item sequences Filter ∆ with only covering 1-item sequences for all s ∈ I do C ←TRIGAT_enum(s,∆|s,Gaggr,minCov) end for Eliminate non-closed sequences from C C ← prefix closed patterns s,Xk ∈ C, s.t.Xk ∈ (M ×S) for all P = s,Xk ∈ C do Add P to P if GR( s,Xk ,∆Xk ) ≥ minGr end for M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 13
  • 14. Method and algorithm TRIGAT Procedure TRIGAT_ENUM Require: s = S1,...,S ,∆|s,Gaggr, minCov Ensure: C the set of covering sequences of prefix s 1: if not closed_based_prunnable(s) then 2: insert s in C 3: end if 4: Scan ∆|s, find every covering item α ∈ (D×S) such that s can be extended to S1,...,S −1,{S ∪α} or S1,...,S ,α 5: for all valid α do 6: s ← S1,...,S −1,{S ∪α} 7: TRIGAT_enum(s,D|s,Gaggr,minCov) 8: s ← S1,...,S ,α 9: TRIGAT_enum(s,D|s,Gaggr,minCov) 10: end for M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 14
  • 15. Experiments Outline 1 Triggering patterns 2 Method and algorithm 3 Experiments 4 Conclusion M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 15
  • 16. Experiments Quantitative experiments Running times Distribution of support, GR, ... Scalability First qualitative assessments Synchronous/asynchronous events Dense/sparse yet covering |V| |F| |T| |D| S I degsum densitysum DBLP 2723 45 9 360 34.4 6.6 14.7 0.005 RITA1 220 8 30 30 16.3 5.1 15.7 0.07 RITA2 234 8 24 39 4.5 1.8 17 0.07 RITA3 280 6 8 87 28.3 6.5 15.9 0.05 del.icio.us 1867 121 5 400 31 1.6 11 0.003 M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 16
  • 17. Experiments Quantitative results M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 17
  • 18. Experiments The DBLP dataset Detecting asynchronous events Scientific careers of researchers with different experiences Rank Pattern Support Coverage Growth rate ρ 1 {closeness− 1 },{IEEETransKnowlDtEn+},{numCliques+ 1 } → {numCliques− 1 } 15 578 87.4 38.5 2 {clustering++ 1 ,degree++ 1 },{Journal++,eigenvector++ 2 } → {eigenvector++ 3 } 31 546 71.6 17.6 3 {ICDE+,numCliques+ 1 } → {numCliques− 1 } 22 606 64.1 27 4 {eigenvector++ 1 ,degree++ 1 },{VLDB++,degree++ 2 } → {degree++ 3 } 29 580 63.8 20 5 {eigenvector++ 1 ,clustering++ 1 },{Journal++,eigenvector++ 2 } → {eigenvector++ 3 } 36 619 59.3 17.19 6 {ACMTransDBSys+},{numCliques+ 1 } → {numCliques− 1 } 20 547 58.3 27.35 7 {eigenvector++ 1 },{Journal++,betweennes++ 3 } → {betweennes++ 4 } 20 587 58.4 29.35 8 {eigenvector++ 1 },{VLDB++,degree++ 2 } → {degree++ 3 } 30 623 56.47 20.7 9 {SIGMOD−},{numCliques+ 1 } → {numCliques− 1 } 32 754 53.3 23.56 10 {closeness− 1 },{SIGMOD−},{numCliques+ 1 } → {numCliques− 1 } 18 552 52.4 30.6 M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 18
  • 19. Experiments The R.I.T.A. dataset Synchronous events RITA1: daily in September 2001 {#Canceled+}{Degree−,Closeness−,NumCliques−, Pagerank−,Betweennes−} → Degree+ with sup = 5, cov = 144 AIRPORTS THAT ABSORB THE TRAFFIC TWO DAYS AFTER RITA2: monthly in (sept. 2000 ; Sept. 2002 ) {#Canceled+}{#Canceled−},{numCliques−,Betweeness+} → numCliques+ with sup = 8, cov = 61 A "BACK TO NORMAL" AROUND MARCH 2002 RITA3: Aug./Sept. 2005 (Katrina Hurricane) THE MOST DISCRIMINANT APPEARS DURING KATRINA M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 19
  • 20. Experiments The del.ico.us dataset What are the most triggering attributes? how-to, tutorial, web design, visualization “teaching triggering” video, community “social triggering” M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 20
  • 21. Conclusion Outline 1 Triggering patterns 2 Method and algorithm 3 Experiments 4 Conclusion M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 21
  • 22. Conclusion Conclusion Triggering patterns in dynamic graphs Sequences of variation of vertex attribute values that may trigger topological changes Closed sequential pattern mining Growth rate: gives the discrimination power of a sequence to explain a topological change Coverage: tells us about the diffusion potential Main challenge Which aggregated graph to choose when computing the coverage? Patterns image can have (a)-synchronous sequences 2|T| aggregated graphs are possible!! M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 22
  翻译: