SlideShare a Scribd company logo
Training and Serving ML models using Kubeflow
• Subtitle or speaker name
Jayesh Sharma
Machine Learning Stages
@aronchick
Make it easy for everyone to develop, deploy,
and manage portable, scalable ML everywhere
Why Kubeflow?
● Composability
○ Choose from existing popular tools
● Portability
○ Build using cloud native, portable Kubernetes APIs
● Scalability
○ TF already supports CPU/GPU/distributed
○ K8s scales to 5k nodes with same stack
What’s in the Box?
● Jupyter Hub - for collaborative & interactive training
● A TensorFlow Training Controller
● A TensorFlow Serving Deployment
● Argo for workflows
● Much more
What’s in the Box?
Kubeflow today
Kubeflow is composable
Training
• Perform distributed training with TF-Jobs
• Run pipelines with regular containers as steps.
• Run pipelines with TF-Jobs and other CRDs as steps.
Serving
• KF-Serving, Seldon Core
• Azure ML Service and other frameworks.
Kubeflow
Architecture
TF-Job: Distributed Training
A distributed TensorFlow job typically contains 0 or more of the following
processes:
• Chief: The chief is responsible for orchestrating training and performing
tasks like checkpointing the model.
• PS: The ps are parameter servers; these servers provide a distributed
data store for the model parameters.
• Worker: The workers do the actual work of training the model. In some
cases, worker 0 might also act as the chief.
• Evaluator: The evaluators can be used to compute
evaluation metrics as the model is trained.
An example
TF-Job YAML
Parameter Server option
Worker specification
Image with your code
Command to begin
training
Kubeflow Pipelines
• A user interface (UI) for managing and tracking experiments, jobs, and
runs.
• An engine for scheduling multi-step ML workflows.
• An SDK for defining and manipulating pipelines and components.
• Notebooks for interacting with the system using the SDK.
Anatomy of a pipeline
• Containerized implementations of ML Tasks
• Pre-built components: Just provide params or code snippets. Create
your own components from code or libraries
• Use any runtime, framework, data types
• Attach k8s objects - volumes, secrets
• Specification of the sequence of steps
• Specified via Python DSL
• Inferred from data dependencies on input/output
• Input Parameters
• A “Run” = Pipeline invoked w/ specific parameters
• Schedules
• Invoke a single run or create a recurring scheduled pipeline
Training And Serving ML Model Using Kubeflow by Jayesh Sharma
Training And Serving ML Model Using Kubeflow by Jayesh Sharma
Ad

More Related Content

What's hot (20)

MLOps in action
MLOps in actionMLOps in action
MLOps in action
Pieter de Bruin
 
KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...
KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...
KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...
Chris Fregly
 
What is MLOps
What is MLOpsWhat is MLOps
What is MLOps
Henrik Skogström
 
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMakerMLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
Provectus
 
[OpenStack] 공개 소프트웨어 오픈스택 입문 & 파헤치기
[OpenStack] 공개 소프트웨어 오픈스택 입문 & 파헤치기[OpenStack] 공개 소프트웨어 오픈스택 입문 & 파헤치기
[OpenStack] 공개 소프트웨어 오픈스택 입문 & 파헤치기
Ian Choi
 
Native Support of Prometheus Monitoring in Apache Spark 3.0
Native Support of Prometheus Monitoring in Apache Spark 3.0Native Support of Prometheus Monitoring in Apache Spark 3.0
Native Support of Prometheus Monitoring in Apache Spark 3.0
Databricks
 
Productionizing Machine Learning with a Microservices Architecture
Productionizing Machine Learning with a Microservices ArchitectureProductionizing Machine Learning with a Microservices Architecture
Productionizing Machine Learning with a Microservices Architecture
Databricks
 
PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...
PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...
PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...
NTT DATA Technology & Innovation
 
Making Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta LakeMaking Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta Lake
Databricks
 
KFServing - Serverless Model Inferencing
KFServing - Serverless Model InferencingKFServing - Serverless Model Inferencing
KFServing - Serverless Model Inferencing
Animesh Singh
 
Vertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
Vertex AI - Unified ML Platform for the entire AI workflow on Google CloudVertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
Vertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
Márton Kodok
 
Drifting Away: Testing ML Models in Production
Drifting Away: Testing ML Models in ProductionDrifting Away: Testing ML Models in Production
Drifting Away: Testing ML Models in Production
Databricks
 
Kubernetes
KubernetesKubernetes
Kubernetes
erialc_w
 
Machine Learning Operations & Azure
Machine Learning Operations & AzureMachine Learning Operations & Azure
Machine Learning Operations & Azure
Erlangen Artificial Intelligence & Machine Learning Meetup
 
Pythonsevilla2019 - Introduction to MLFlow
Pythonsevilla2019 - Introduction to MLFlowPythonsevilla2019 - Introduction to MLFlow
Pythonsevilla2019 - Introduction to MLFlow
Fernando Ortega Gallego
 
Productionzing ML Model Using MLflow Model Serving
Productionzing ML Model Using MLflow Model ServingProductionzing ML Model Using MLflow Model Serving
Productionzing ML Model Using MLflow Model Serving
Databricks
 
[Cloud OnAir] GCP 上でストリーミングデータ処理基盤を構築してみよう! 2018年9月13日 放送
[Cloud OnAir] GCP 上でストリーミングデータ処理基盤を構築してみよう! 2018年9月13日 放送[Cloud OnAir] GCP 上でストリーミングデータ処理基盤を構築してみよう! 2018年9月13日 放送
[Cloud OnAir] GCP 上でストリーミングデータ処理基盤を構築してみよう! 2018年9月13日 放送
Google Cloud Platform - Japan
 
Unified MLOps: Feature Stores & Model Deployment
Unified MLOps: Feature Stores & Model DeploymentUnified MLOps: Feature Stores & Model Deployment
Unified MLOps: Feature Stores & Model Deployment
Databricks
 
Getting Started with Apache Spark on Kubernetes
Getting Started with Apache Spark on KubernetesGetting Started with Apache Spark on Kubernetes
Getting Started with Apache Spark on Kubernetes
Databricks
 
MLOps 플랫폼을 만드는 과정의 고민과 해결 사례 공유(feat. Kubeflow)
MLOps 플랫폼을 만드는 과정의 고민과 해결 사례 공유(feat. Kubeflow)MLOps 플랫폼을 만드는 과정의 고민과 해결 사례 공유(feat. Kubeflow)
MLOps 플랫폼을 만드는 과정의 고민과 해결 사례 공유(feat. Kubeflow)
Jaeyeon Kim
 
KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...
KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...
KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...
Chris Fregly
 
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMakerMLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
Provectus
 
[OpenStack] 공개 소프트웨어 오픈스택 입문 & 파헤치기
[OpenStack] 공개 소프트웨어 오픈스택 입문 & 파헤치기[OpenStack] 공개 소프트웨어 오픈스택 입문 & 파헤치기
[OpenStack] 공개 소프트웨어 오픈스택 입문 & 파헤치기
Ian Choi
 
Native Support of Prometheus Monitoring in Apache Spark 3.0
Native Support of Prometheus Monitoring in Apache Spark 3.0Native Support of Prometheus Monitoring in Apache Spark 3.0
Native Support of Prometheus Monitoring in Apache Spark 3.0
Databricks
 
Productionizing Machine Learning with a Microservices Architecture
Productionizing Machine Learning with a Microservices ArchitectureProductionizing Machine Learning with a Microservices Architecture
Productionizing Machine Learning with a Microservices Architecture
Databricks
 
PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...
PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...
PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...
NTT DATA Technology & Innovation
 
Making Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta LakeMaking Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta Lake
Databricks
 
KFServing - Serverless Model Inferencing
KFServing - Serverless Model InferencingKFServing - Serverless Model Inferencing
KFServing - Serverless Model Inferencing
Animesh Singh
 
Vertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
Vertex AI - Unified ML Platform for the entire AI workflow on Google CloudVertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
Vertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
Márton Kodok
 
Drifting Away: Testing ML Models in Production
Drifting Away: Testing ML Models in ProductionDrifting Away: Testing ML Models in Production
Drifting Away: Testing ML Models in Production
Databricks
 
Kubernetes
KubernetesKubernetes
Kubernetes
erialc_w
 
Pythonsevilla2019 - Introduction to MLFlow
Pythonsevilla2019 - Introduction to MLFlowPythonsevilla2019 - Introduction to MLFlow
Pythonsevilla2019 - Introduction to MLFlow
Fernando Ortega Gallego
 
Productionzing ML Model Using MLflow Model Serving
Productionzing ML Model Using MLflow Model ServingProductionzing ML Model Using MLflow Model Serving
Productionzing ML Model Using MLflow Model Serving
Databricks
 
[Cloud OnAir] GCP 上でストリーミングデータ処理基盤を構築してみよう! 2018年9月13日 放送
[Cloud OnAir] GCP 上でストリーミングデータ処理基盤を構築してみよう! 2018年9月13日 放送[Cloud OnAir] GCP 上でストリーミングデータ処理基盤を構築してみよう! 2018年9月13日 放送
[Cloud OnAir] GCP 上でストリーミングデータ処理基盤を構築してみよう! 2018年9月13日 放送
Google Cloud Platform - Japan
 
Unified MLOps: Feature Stores & Model Deployment
Unified MLOps: Feature Stores & Model DeploymentUnified MLOps: Feature Stores & Model Deployment
Unified MLOps: Feature Stores & Model Deployment
Databricks
 
Getting Started with Apache Spark on Kubernetes
Getting Started with Apache Spark on KubernetesGetting Started with Apache Spark on Kubernetes
Getting Started with Apache Spark on Kubernetes
Databricks
 
MLOps 플랫폼을 만드는 과정의 고민과 해결 사례 공유(feat. Kubeflow)
MLOps 플랫폼을 만드는 과정의 고민과 해결 사례 공유(feat. Kubeflow)MLOps 플랫폼을 만드는 과정의 고민과 해결 사례 공유(feat. Kubeflow)
MLOps 플랫폼을 만드는 과정의 고민과 해결 사례 공유(feat. Kubeflow)
Jaeyeon Kim
 

Similar to Training And Serving ML Model Using Kubeflow by Jayesh Sharma (20)

Containerized architectures for deep learning
Containerized architectures for deep learningContainerized architectures for deep learning
Containerized architectures for deep learning
Antje Barth
 
MLOps with Kubernetes - Thiago Ramos.pdf
MLOps with Kubernetes - Thiago Ramos.pdfMLOps with Kubernetes - Thiago Ramos.pdf
MLOps with Kubernetes - Thiago Ramos.pdf
ThiagoRamos343326
 
Distributed Tensorflow with Kubernetes - data2day - Jakob Karalus
Distributed Tensorflow with Kubernetes - data2day - Jakob KaralusDistributed Tensorflow with Kubernetes - data2day - Jakob Karalus
Distributed Tensorflow with Kubernetes - data2day - Jakob Karalus
Jakob Karalus
 
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
DataWorks Summit
 
Kubeflow: portable and scalable machine learning using Jupyterhub and Kuberne...
Kubeflow: portable and scalable machine learning using Jupyterhub and Kuberne...Kubeflow: portable and scalable machine learning using Jupyterhub and Kuberne...
Kubeflow: portable and scalable machine learning using Jupyterhub and Kuberne...
Akash Tandon
 
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
DataScienceConferenc1
 
Deploy your machine learning models to production with Kubernetes
Deploy your machine learning models to production with KubernetesDeploy your machine learning models to production with Kubernetes
Deploy your machine learning models to production with Kubernetes
cnvrg.io AI OS - Hands-on ML Workshops
 
MLflow with Databricks
MLflow with DatabricksMLflow with Databricks
MLflow with Databricks
Liangjun Jiang
 
Mlflow with databricks
Mlflow with databricksMlflow with databricks
Mlflow with databricks
Liangjun Jiang
 
Running Apache Spark Jobs Using Kubernetes
Running Apache Spark Jobs Using KubernetesRunning Apache Spark Jobs Using Kubernetes
Running Apache Spark Jobs Using Kubernetes
Databricks
 
Hot to build continuously processing for 24/7 real-time data streaming platform?
Hot to build continuously processing for 24/7 real-time data streaming platform?Hot to build continuously processing for 24/7 real-time data streaming platform?
Hot to build continuously processing for 24/7 real-time data streaming platform?
GetInData
 
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
Sotrender
 
Vertex AI Presentation
Vertex AI PresentationVertex AI Presentation
Vertex AI Presentation
Knoldus Inc.
 
Bodywork - GitOps for Machine Learning
Bodywork - GitOps for Machine LearningBodywork - GitOps for Machine Learning
Bodywork - GitOps for Machine Learning
Alex Ioannides
 
Democratizing machine learning on kubernetes
Democratizing machine learning on kubernetesDemocratizing machine learning on kubernetes
Democratizing machine learning on kubernetes
Docker, Inc.
 
Parallel Programming
Parallel ProgrammingParallel Programming
Parallel Programming
Mindfire Solutions
 
Neptune @ SoCal
Neptune @ SoCalNeptune @ SoCal
Neptune @ SoCal
Chris Bunch
 
Caffe2
Caffe2Caffe2
Caffe2
Bang Tsui Liou
 
ML Platform Q1 Meetup: Airbnb's End-to-End Machine Learning Infrastructure
ML Platform Q1 Meetup: Airbnb's End-to-End Machine Learning InfrastructureML Platform Q1 Meetup: Airbnb's End-to-End Machine Learning Infrastructure
ML Platform Q1 Meetup: Airbnb's End-to-End Machine Learning Infrastructure
Fei Chen
 
DAIS Europe Nov. 2020 presentation on MLflow Model Serving
DAIS Europe Nov. 2020 presentation on MLflow Model ServingDAIS Europe Nov. 2020 presentation on MLflow Model Serving
DAIS Europe Nov. 2020 presentation on MLflow Model Serving
amesar0
 
Containerized architectures for deep learning
Containerized architectures for deep learningContainerized architectures for deep learning
Containerized architectures for deep learning
Antje Barth
 
MLOps with Kubernetes - Thiago Ramos.pdf
MLOps with Kubernetes - Thiago Ramos.pdfMLOps with Kubernetes - Thiago Ramos.pdf
MLOps with Kubernetes - Thiago Ramos.pdf
ThiagoRamos343326
 
Distributed Tensorflow with Kubernetes - data2day - Jakob Karalus
Distributed Tensorflow with Kubernetes - data2day - Jakob KaralusDistributed Tensorflow with Kubernetes - data2day - Jakob Karalus
Distributed Tensorflow with Kubernetes - data2day - Jakob Karalus
Jakob Karalus
 
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
DataWorks Summit
 
Kubeflow: portable and scalable machine learning using Jupyterhub and Kuberne...
Kubeflow: portable and scalable machine learning using Jupyterhub and Kuberne...Kubeflow: portable and scalable machine learning using Jupyterhub and Kuberne...
Kubeflow: portable and scalable machine learning using Jupyterhub and Kuberne...
Akash Tandon
 
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
DataScienceConferenc1
 
MLflow with Databricks
MLflow with DatabricksMLflow with Databricks
MLflow with Databricks
Liangjun Jiang
 
Mlflow with databricks
Mlflow with databricksMlflow with databricks
Mlflow with databricks
Liangjun Jiang
 
Running Apache Spark Jobs Using Kubernetes
Running Apache Spark Jobs Using KubernetesRunning Apache Spark Jobs Using Kubernetes
Running Apache Spark Jobs Using Kubernetes
Databricks
 
Hot to build continuously processing for 24/7 real-time data streaming platform?
Hot to build continuously processing for 24/7 real-time data streaming platform?Hot to build continuously processing for 24/7 real-time data streaming platform?
Hot to build continuously processing for 24/7 real-time data streaming platform?
GetInData
 
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
Sotrender
 
Vertex AI Presentation
Vertex AI PresentationVertex AI Presentation
Vertex AI Presentation
Knoldus Inc.
 
Bodywork - GitOps for Machine Learning
Bodywork - GitOps for Machine LearningBodywork - GitOps for Machine Learning
Bodywork - GitOps for Machine Learning
Alex Ioannides
 
Democratizing machine learning on kubernetes
Democratizing machine learning on kubernetesDemocratizing machine learning on kubernetes
Democratizing machine learning on kubernetes
Docker, Inc.
 
ML Platform Q1 Meetup: Airbnb's End-to-End Machine Learning Infrastructure
ML Platform Q1 Meetup: Airbnb's End-to-End Machine Learning InfrastructureML Platform Q1 Meetup: Airbnb's End-to-End Machine Learning Infrastructure
ML Platform Q1 Meetup: Airbnb's End-to-End Machine Learning Infrastructure
Fei Chen
 
DAIS Europe Nov. 2020 presentation on MLflow Model Serving
DAIS Europe Nov. 2020 presentation on MLflow Model ServingDAIS Europe Nov. 2020 presentation on MLflow Model Serving
DAIS Europe Nov. 2020 presentation on MLflow Model Serving
amesar0
 
Ad

More from CodeOps Technologies LLP (20)

AWS Serverless Event-driven Architecture - in lastminute.com meetup
AWS Serverless Event-driven Architecture - in lastminute.com meetupAWS Serverless Event-driven Architecture - in lastminute.com meetup
AWS Serverless Event-driven Architecture - in lastminute.com meetup
CodeOps Technologies LLP
 
Understanding azure batch service
Understanding azure batch serviceUnderstanding azure batch service
Understanding azure batch service
CodeOps Technologies LLP
 
DEVOPS AND MACHINE LEARNING
DEVOPS AND MACHINE LEARNINGDEVOPS AND MACHINE LEARNING
DEVOPS AND MACHINE LEARNING
CodeOps Technologies LLP
 
SERVERLESS MIDDLEWARE IN AZURE FUNCTIONS
SERVERLESS MIDDLEWARE IN AZURE FUNCTIONSSERVERLESS MIDDLEWARE IN AZURE FUNCTIONS
SERVERLESS MIDDLEWARE IN AZURE FUNCTIONS
CodeOps Technologies LLP
 
BUILDING SERVERLESS SOLUTIONS WITH AZURE FUNCTIONS
BUILDING SERVERLESS SOLUTIONS WITH AZURE FUNCTIONSBUILDING SERVERLESS SOLUTIONS WITH AZURE FUNCTIONS
BUILDING SERVERLESS SOLUTIONS WITH AZURE FUNCTIONS
CodeOps Technologies LLP
 
APPLYING DEVOPS STRATEGIES ON SCALE USING AZURE DEVOPS SERVICES
APPLYING DEVOPS STRATEGIES ON SCALE USING AZURE DEVOPS SERVICESAPPLYING DEVOPS STRATEGIES ON SCALE USING AZURE DEVOPS SERVICES
APPLYING DEVOPS STRATEGIES ON SCALE USING AZURE DEVOPS SERVICES
CodeOps Technologies LLP
 
BUILD, TEST & DEPLOY .NET CORE APPS IN AZURE DEVOPS
BUILD, TEST & DEPLOY .NET CORE APPS IN AZURE DEVOPSBUILD, TEST & DEPLOY .NET CORE APPS IN AZURE DEVOPS
BUILD, TEST & DEPLOY .NET CORE APPS IN AZURE DEVOPS
CodeOps Technologies LLP
 
CREATE RELIABLE AND LOW-CODE APPLICATION IN SERVERLESS MANNER
CREATE RELIABLE AND LOW-CODE APPLICATION IN SERVERLESS MANNERCREATE RELIABLE AND LOW-CODE APPLICATION IN SERVERLESS MANNER
CREATE RELIABLE AND LOW-CODE APPLICATION IN SERVERLESS MANNER
CodeOps Technologies LLP
 
CREATING REAL TIME DASHBOARD WITH BLAZOR, AZURE FUNCTION COSMOS DB AN AZURE S...
CREATING REAL TIME DASHBOARD WITH BLAZOR, AZURE FUNCTION COSMOS DB AN AZURE S...CREATING REAL TIME DASHBOARD WITH BLAZOR, AZURE FUNCTION COSMOS DB AN AZURE S...
CREATING REAL TIME DASHBOARD WITH BLAZOR, AZURE FUNCTION COSMOS DB AN AZURE S...
CodeOps Technologies LLP
 
WRITE SCALABLE COMMUNICATION APPLICATION WITH POWER OF SERVERLESS
WRITE SCALABLE COMMUNICATION APPLICATION WITH POWER OF SERVERLESSWRITE SCALABLE COMMUNICATION APPLICATION WITH POWER OF SERVERLESS
WRITE SCALABLE COMMUNICATION APPLICATION WITH POWER OF SERVERLESS
CodeOps Technologies LLP
 
Deploy Microservices To Kubernetes Without Secrets by Reenu Saluja
Deploy Microservices To Kubernetes Without Secrets by Reenu SalujaDeploy Microservices To Kubernetes Without Secrets by Reenu Saluja
Deploy Microservices To Kubernetes Without Secrets by Reenu Saluja
CodeOps Technologies LLP
 
Leverage Azure Tech stack for any Kubernetes cluster via Azure Arc by Saiyam ...
Leverage Azure Tech stack for any Kubernetes cluster via Azure Arc by Saiyam ...Leverage Azure Tech stack for any Kubernetes cluster via Azure Arc by Saiyam ...
Leverage Azure Tech stack for any Kubernetes cluster via Azure Arc by Saiyam ...
CodeOps Technologies LLP
 
YAML Tips For Kubernetes by Neependra Khare
YAML Tips For Kubernetes by Neependra KhareYAML Tips For Kubernetes by Neependra Khare
YAML Tips For Kubernetes by Neependra Khare
CodeOps Technologies LLP
 
Must Know Azure Kubernetes Best Practices And Features For Better Resiliency ...
Must Know Azure Kubernetes Best Practices And Features For Better Resiliency ...Must Know Azure Kubernetes Best Practices And Features For Better Resiliency ...
Must Know Azure Kubernetes Best Practices And Features For Better Resiliency ...
CodeOps Technologies LLP
 
Monitor Azure Kubernetes Cluster With Prometheus by Mamta Jha
Monitor Azure Kubernetes Cluster With Prometheus by Mamta JhaMonitor Azure Kubernetes Cluster With Prometheus by Mamta Jha
Monitor Azure Kubernetes Cluster With Prometheus by Mamta Jha
CodeOps Technologies LLP
 
Jet brains space intro presentation
Jet brains space intro presentationJet brains space intro presentation
Jet brains space intro presentation
CodeOps Technologies LLP
 
Functional Programming in Java 8 - Lambdas and Streams
Functional Programming in Java 8 - Lambdas and StreamsFunctional Programming in Java 8 - Lambdas and Streams
Functional Programming in Java 8 - Lambdas and Streams
CodeOps Technologies LLP
 
Distributed Tracing: New DevOps Foundation
Distributed Tracing: New DevOps FoundationDistributed Tracing: New DevOps Foundation
Distributed Tracing: New DevOps Foundation
CodeOps Technologies LLP
 
"Distributed Tracing: New DevOps Foundation" by Jayesh Ahire
"Distributed Tracing: New DevOps Foundation" by Jayesh Ahire  "Distributed Tracing: New DevOps Foundation" by Jayesh Ahire
"Distributed Tracing: New DevOps Foundation" by Jayesh Ahire
CodeOps Technologies LLP
 
Improve customer engagement and productivity with conversational ai
Improve customer engagement and productivity with conversational aiImprove customer engagement and productivity with conversational ai
Improve customer engagement and productivity with conversational ai
CodeOps Technologies LLP
 
AWS Serverless Event-driven Architecture - in lastminute.com meetup
AWS Serverless Event-driven Architecture - in lastminute.com meetupAWS Serverless Event-driven Architecture - in lastminute.com meetup
AWS Serverless Event-driven Architecture - in lastminute.com meetup
CodeOps Technologies LLP
 
BUILDING SERVERLESS SOLUTIONS WITH AZURE FUNCTIONS
BUILDING SERVERLESS SOLUTIONS WITH AZURE FUNCTIONSBUILDING SERVERLESS SOLUTIONS WITH AZURE FUNCTIONS
BUILDING SERVERLESS SOLUTIONS WITH AZURE FUNCTIONS
CodeOps Technologies LLP
 
APPLYING DEVOPS STRATEGIES ON SCALE USING AZURE DEVOPS SERVICES
APPLYING DEVOPS STRATEGIES ON SCALE USING AZURE DEVOPS SERVICESAPPLYING DEVOPS STRATEGIES ON SCALE USING AZURE DEVOPS SERVICES
APPLYING DEVOPS STRATEGIES ON SCALE USING AZURE DEVOPS SERVICES
CodeOps Technologies LLP
 
BUILD, TEST & DEPLOY .NET CORE APPS IN AZURE DEVOPS
BUILD, TEST & DEPLOY .NET CORE APPS IN AZURE DEVOPSBUILD, TEST & DEPLOY .NET CORE APPS IN AZURE DEVOPS
BUILD, TEST & DEPLOY .NET CORE APPS IN AZURE DEVOPS
CodeOps Technologies LLP
 
CREATE RELIABLE AND LOW-CODE APPLICATION IN SERVERLESS MANNER
CREATE RELIABLE AND LOW-CODE APPLICATION IN SERVERLESS MANNERCREATE RELIABLE AND LOW-CODE APPLICATION IN SERVERLESS MANNER
CREATE RELIABLE AND LOW-CODE APPLICATION IN SERVERLESS MANNER
CodeOps Technologies LLP
 
CREATING REAL TIME DASHBOARD WITH BLAZOR, AZURE FUNCTION COSMOS DB AN AZURE S...
CREATING REAL TIME DASHBOARD WITH BLAZOR, AZURE FUNCTION COSMOS DB AN AZURE S...CREATING REAL TIME DASHBOARD WITH BLAZOR, AZURE FUNCTION COSMOS DB AN AZURE S...
CREATING REAL TIME DASHBOARD WITH BLAZOR, AZURE FUNCTION COSMOS DB AN AZURE S...
CodeOps Technologies LLP
 
WRITE SCALABLE COMMUNICATION APPLICATION WITH POWER OF SERVERLESS
WRITE SCALABLE COMMUNICATION APPLICATION WITH POWER OF SERVERLESSWRITE SCALABLE COMMUNICATION APPLICATION WITH POWER OF SERVERLESS
WRITE SCALABLE COMMUNICATION APPLICATION WITH POWER OF SERVERLESS
CodeOps Technologies LLP
 
Deploy Microservices To Kubernetes Without Secrets by Reenu Saluja
Deploy Microservices To Kubernetes Without Secrets by Reenu SalujaDeploy Microservices To Kubernetes Without Secrets by Reenu Saluja
Deploy Microservices To Kubernetes Without Secrets by Reenu Saluja
CodeOps Technologies LLP
 
Leverage Azure Tech stack for any Kubernetes cluster via Azure Arc by Saiyam ...
Leverage Azure Tech stack for any Kubernetes cluster via Azure Arc by Saiyam ...Leverage Azure Tech stack for any Kubernetes cluster via Azure Arc by Saiyam ...
Leverage Azure Tech stack for any Kubernetes cluster via Azure Arc by Saiyam ...
CodeOps Technologies LLP
 
YAML Tips For Kubernetes by Neependra Khare
YAML Tips For Kubernetes by Neependra KhareYAML Tips For Kubernetes by Neependra Khare
YAML Tips For Kubernetes by Neependra Khare
CodeOps Technologies LLP
 
Must Know Azure Kubernetes Best Practices And Features For Better Resiliency ...
Must Know Azure Kubernetes Best Practices And Features For Better Resiliency ...Must Know Azure Kubernetes Best Practices And Features For Better Resiliency ...
Must Know Azure Kubernetes Best Practices And Features For Better Resiliency ...
CodeOps Technologies LLP
 
Monitor Azure Kubernetes Cluster With Prometheus by Mamta Jha
Monitor Azure Kubernetes Cluster With Prometheus by Mamta JhaMonitor Azure Kubernetes Cluster With Prometheus by Mamta Jha
Monitor Azure Kubernetes Cluster With Prometheus by Mamta Jha
CodeOps Technologies LLP
 
Functional Programming in Java 8 - Lambdas and Streams
Functional Programming in Java 8 - Lambdas and StreamsFunctional Programming in Java 8 - Lambdas and Streams
Functional Programming in Java 8 - Lambdas and Streams
CodeOps Technologies LLP
 
Distributed Tracing: New DevOps Foundation
Distributed Tracing: New DevOps FoundationDistributed Tracing: New DevOps Foundation
Distributed Tracing: New DevOps Foundation
CodeOps Technologies LLP
 
"Distributed Tracing: New DevOps Foundation" by Jayesh Ahire
"Distributed Tracing: New DevOps Foundation" by Jayesh Ahire  "Distributed Tracing: New DevOps Foundation" by Jayesh Ahire
"Distributed Tracing: New DevOps Foundation" by Jayesh Ahire
CodeOps Technologies LLP
 
Improve customer engagement and productivity with conversational ai
Improve customer engagement and productivity with conversational aiImprove customer engagement and productivity with conversational ai
Improve customer engagement and productivity with conversational ai
CodeOps Technologies LLP
 
Ad

Recently uploaded (20)

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
BookNet Canada
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
Web and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in RajpuraWeb and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in Rajpura
Erginous Technology
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...
BookNet Canada
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
AI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdfAI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdf
Precisely
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
Financial Services Technology Summit 2025
Financial Services Technology Summit 2025Financial Services Technology Summit 2025
Financial Services Technology Summit 2025
Ray Bugg
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
BookNet Canada
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
Web and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in RajpuraWeb and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in Rajpura
Erginous Technology
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...
BookNet Canada
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
AI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdfAI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdf
Precisely
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
Financial Services Technology Summit 2025
Financial Services Technology Summit 2025Financial Services Technology Summit 2025
Financial Services Technology Summit 2025
Ray Bugg
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 

Training And Serving ML Model Using Kubeflow by Jayesh Sharma

  • 1. Training and Serving ML models using Kubeflow • Subtitle or speaker name Jayesh Sharma
  • 3. Make it easy for everyone to develop, deploy, and manage portable, scalable ML everywhere
  • 4. Why Kubeflow? ● Composability ○ Choose from existing popular tools ● Portability ○ Build using cloud native, portable Kubernetes APIs ● Scalability ○ TF already supports CPU/GPU/distributed ○ K8s scales to 5k nodes with same stack
  • 5. What’s in the Box? ● Jupyter Hub - for collaborative & interactive training ● A TensorFlow Training Controller ● A TensorFlow Serving Deployment ● Argo for workflows ● Much more
  • 8. Kubeflow is composable Training • Perform distributed training with TF-Jobs • Run pipelines with regular containers as steps. • Run pipelines with TF-Jobs and other CRDs as steps. Serving • KF-Serving, Seldon Core • Azure ML Service and other frameworks.
  • 10. TF-Job: Distributed Training A distributed TensorFlow job typically contains 0 or more of the following processes: • Chief: The chief is responsible for orchestrating training and performing tasks like checkpointing the model. • PS: The ps are parameter servers; these servers provide a distributed data store for the model parameters. • Worker: The workers do the actual work of training the model. In some cases, worker 0 might also act as the chief. • Evaluator: The evaluators can be used to compute evaluation metrics as the model is trained.
  • 11. An example TF-Job YAML Parameter Server option Worker specification Image with your code Command to begin training
  • 12. Kubeflow Pipelines • A user interface (UI) for managing and tracking experiments, jobs, and runs. • An engine for scheduling multi-step ML workflows. • An SDK for defining and manipulating pipelines and components. • Notebooks for interacting with the system using the SDK.
  • 13. Anatomy of a pipeline • Containerized implementations of ML Tasks • Pre-built components: Just provide params or code snippets. Create your own components from code or libraries • Use any runtime, framework, data types • Attach k8s objects - volumes, secrets • Specification of the sequence of steps • Specified via Python DSL • Inferred from data dependencies on input/output • Input Parameters • A “Run” = Pipeline invoked w/ specific parameters • Schedules • Invoke a single run or create a recurring scheduled pipeline
  翻译: