This document discusses using fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) as an analytical tool for decision making in data mining. Fuzzy TOPSIS extends the traditional TOPSIS method to handle uncertainties by using fuzzy set theory. It involves defining ratings and weights as linguistic variables represented by fuzzy numbers. The key steps are normalizing the fuzzy decision matrix, determining fuzzy positive and negative ideal solutions, calculating distances from the ideal solutions, and determining a closeness coefficient to rank the alternatives. The literature review discusses previous research applying fuzzy set concepts to TOPSIS to address limitations of crisp data in modeling real-world decision problems.