SlideShare a Scribd company logo
Apache Spark
Syed
Solutions Engineer - Big Data
mail.syed786@gmail.com
info.syedacademy@gmail.com
+91-9030477368
History
Developed in 2009 at UC Berkeley AMPLab.
● Open sourced in 2010.
● Spark becomes one of the largest big-data
projects with more 400 contributors in 50+ organizations such
as:
– Databricks, Yahoo!, Intel, Cloudera, IBM, …
• Fast and general cluster computing system
interoperable with Hadoop datasets.
What is Spark?
Where Does Big Data Come From?
It’s all happening online – could record every:
» Click
» Ad impression
» Billing event
» Fast Forward, pause,…
» Server request
» Transaction
» Network message
» Fault
» Facebook
» Instagram
» TripAdvisor
» Twitter
» YouTube
»…
Graph Data
Lots of interesting data has a graph structure:
• Social networks
• Telecommunication Networks
• Computer Networks
• Road networks
• Collaborations/Relationships
• …
Some of these graphs can get quite large
(e.g., Facebook user graph)
Log Files – Apache Web Server Log
Why Apache Spark?
General purpose cluster computing system
• Originally developed at UC Berkeley, now one of the
largest Apache projects
• Typically faster than Hadoop due to main-memory
processing
• High-level APIs in Java, Scala, Python and R
Functionality for:
• Map/Reduce
• SQL processing
• Real-time stream processing
• Machine learning
• Graph processing
Apache Spark EcoSystem
• Apache Spark
• RDDs
• Spark SQL
• Once known as Shark
before completely
integrated into Spark
• For SQL, structured and
semi-structured data
processing
• Spark Streaming
• Processing of live data
streams
• MLlib/ML
• Machine Learning
Algorithms
• GraphX
• Graph Processing
MapReduce vs Spark
PIG HIVE MAHOUT
(machine
learning)
MapReduce
Hadoop MapReduce
Spark_Intro_Syed_Academy
Spark_Intro_Syed_Academy
Spark_Intro_Syed_Academy
Spark_Intro_Syed_Academy
Programming Models
• MapReduce – 50 lines of code
• Spark – 1 line of code
Spark_Intro_Syed_Academy
Spark_Intro_Syed_Academy
Spark_Intro_Syed_Academy
MapReduce Bottlenecks and Improvements
• Bottlenecks
• MapReduce is a very I/O heavy operation
• Map phase needs to read from disk then write back out
• Reduce phase needs to read from disk and then write
back out
• How can we improve it?
• RAM is becoming very cheap and abundant
• Use RAM for in-data sharing
MapReduce vs. Spark (Performance)
MapReduce Record Spark Record Spark Record 1PB
Data Size 102.5 TB 100 TB 1000 TB
# Nodes 2100 206 190
# Cores 50400 physical 6592 virtualized 6080 virtualized
Elapsed Time 72 mins 23 mins 234 mins
Sort rate 1.42 TB/min 4.27 TB/min 4.27 TB/min
Sort rate/node 0.67 GB/min 20.7 GB/min 22.5 GB/min
Spark_Intro_Syed_Academy
Spark Architecture
RDDs
• Primary abstraction object used by Apache Spark
• Resilient Distributed Dataset
• Fault-tolerant
• Collection of elements that can be operated on in parallel
• Distributed collection of data from any source
• Contained in an RDD:
• Set of dependencies on parent RDDs
• Lineage (Directed Acyclic Graph – DAG)
• Set of partitions
• Atomic pieces of a dataset
• A function for computing the RDD based on its parents
• Metadata about its partitioning scheme and data
placement
• RDDs are Immutable
• Allows for more effective fault tolerance
• Intended to support abstract datasets while also maintain
MapReduce properties like automatic fault tolerance,
locality-aware scheduling and scalability.
SPARK SQL
• DataFrames
• DataSets
Spark Streaming
• Spark Streaming is an extension of the core Spark API that
enables scalable, high-throughput, fault-tolerant stream
processing of live data streams
Spark_Intro_Syed_Academy
Thank you!
www.syedacademy.com
mail.syed786@gmail.com
info.syedacademy@gmail.com
+91-9030477368

More Related Content

What's hot (19)

Intro to Apache Spark
Intro to Apache SparkIntro to Apache Spark
Intro to Apache Spark
Marius Soutier
 
Data Science with Spark & Zeppelin
Data Science with Spark & ZeppelinData Science with Spark & Zeppelin
Data Science with Spark & Zeppelin
Vinay Shukla
 
Spark Summit EU talk by Kaarthik Sivashanmugam
Spark Summit EU talk by Kaarthik SivashanmugamSpark Summit EU talk by Kaarthik Sivashanmugam
Spark Summit EU talk by Kaarthik Sivashanmugam
Spark Summit
 
Spark: Interactive To Production
Spark: Interactive To ProductionSpark: Interactive To Production
Spark: Interactive To Production
Jen Aman
 
Spark Streaming and MLlib - Hyderabad Spark Group
Spark Streaming and MLlib - Hyderabad Spark GroupSpark Streaming and MLlib - Hyderabad Spark Group
Spark Streaming and MLlib - Hyderabad Spark Group
Phaneendra Chiruvella
 
Netflix running Presto in the AWS Cloud
Netflix running Presto in the AWS CloudNetflix running Presto in the AWS Cloud
Netflix running Presto in the AWS Cloud
Zhenxiao Luo
 
Spark Summit EU talk by Ahsan Javed Awan
Spark Summit EU talk by Ahsan Javed AwanSpark Summit EU talk by Ahsan Javed Awan
Spark Summit EU talk by Ahsan Javed Awan
Spark Summit
 
Spark Summit EU talk by Josef Habdank
Spark Summit EU talk by Josef HabdankSpark Summit EU talk by Josef Habdank
Spark Summit EU talk by Josef Habdank
Spark Summit
 
Mining public datasets using opensource tools: Zeppelin, Spark and Juju
Mining public datasets using opensource tools: Zeppelin, Spark and JujuMining public datasets using opensource tools: Zeppelin, Spark and Juju
Mining public datasets using opensource tools: Zeppelin, Spark and Juju
seoul_engineer
 
Efficiently Building Machine Learning Models for Predictive Maintenance in th...
Efficiently Building Machine Learning Models for Predictive Maintenance in th...Efficiently Building Machine Learning Models for Predictive Maintenance in th...
Efficiently Building Machine Learning Models for Predictive Maintenance in th...
Databricks
 
Bring Satellite and Drone Imagery into your Data Science Workflows
Bring Satellite and Drone Imagery into your Data Science WorkflowsBring Satellite and Drone Imagery into your Data Science Workflows
Bring Satellite and Drone Imagery into your Data Science Workflows
Databricks
 
Alluxio+Presto: An Architecture for Fast SQL in the Cloud
Alluxio+Presto: An Architecture for Fast SQL in the CloudAlluxio+Presto: An Architecture for Fast SQL in the Cloud
Alluxio+Presto: An Architecture for Fast SQL in the Cloud
Alluxio, Inc.
 
Introduction to Dremio
Introduction to DremioIntroduction to Dremio
Introduction to Dremio
Dremio Corporation
 
Trends for Big Data and Apache Spark in 2017 by Matei Zaharia
Trends for Big Data and Apache Spark in 2017 by Matei ZahariaTrends for Big Data and Apache Spark in 2017 by Matei Zaharia
Trends for Big Data and Apache Spark in 2017 by Matei Zaharia
Spark Summit
 
Spark Magic Building and Deploying a High Scale Product in 4 Months
Spark Magic Building and Deploying a High Scale Product in 4 MonthsSpark Magic Building and Deploying a High Scale Product in 4 Months
Spark Magic Building and Deploying a High Scale Product in 4 Months
tsliwowicz
 
Spark Summit EU talk by Tug Grall
Spark Summit EU talk by Tug GrallSpark Summit EU talk by Tug Grall
Spark Summit EU talk by Tug Grall
Spark Summit
 
Big Telco - Yousun Jeong
Big Telco - Yousun JeongBig Telco - Yousun Jeong
Big Telco - Yousun Jeong
Spark Summit
 
Lessons Learned from Modernizing USCIS Data Analytics Platform
Lessons Learned from Modernizing USCIS Data Analytics PlatformLessons Learned from Modernizing USCIS Data Analytics Platform
Lessons Learned from Modernizing USCIS Data Analytics Platform
Databricks
 
Dynamic DDL: Adding Structure to Streaming Data on the Fly with David Winters...
Dynamic DDL: Adding Structure to Streaming Data on the Fly with David Winters...Dynamic DDL: Adding Structure to Streaming Data on the Fly with David Winters...
Dynamic DDL: Adding Structure to Streaming Data on the Fly with David Winters...
Databricks
 
Data Science with Spark & Zeppelin
Data Science with Spark & ZeppelinData Science with Spark & Zeppelin
Data Science with Spark & Zeppelin
Vinay Shukla
 
Spark Summit EU talk by Kaarthik Sivashanmugam
Spark Summit EU talk by Kaarthik SivashanmugamSpark Summit EU talk by Kaarthik Sivashanmugam
Spark Summit EU talk by Kaarthik Sivashanmugam
Spark Summit
 
Spark: Interactive To Production
Spark: Interactive To ProductionSpark: Interactive To Production
Spark: Interactive To Production
Jen Aman
 
Spark Streaming and MLlib - Hyderabad Spark Group
Spark Streaming and MLlib - Hyderabad Spark GroupSpark Streaming and MLlib - Hyderabad Spark Group
Spark Streaming and MLlib - Hyderabad Spark Group
Phaneendra Chiruvella
 
Netflix running Presto in the AWS Cloud
Netflix running Presto in the AWS CloudNetflix running Presto in the AWS Cloud
Netflix running Presto in the AWS Cloud
Zhenxiao Luo
 
Spark Summit EU talk by Ahsan Javed Awan
Spark Summit EU talk by Ahsan Javed AwanSpark Summit EU talk by Ahsan Javed Awan
Spark Summit EU talk by Ahsan Javed Awan
Spark Summit
 
Spark Summit EU talk by Josef Habdank
Spark Summit EU talk by Josef HabdankSpark Summit EU talk by Josef Habdank
Spark Summit EU talk by Josef Habdank
Spark Summit
 
Mining public datasets using opensource tools: Zeppelin, Spark and Juju
Mining public datasets using opensource tools: Zeppelin, Spark and JujuMining public datasets using opensource tools: Zeppelin, Spark and Juju
Mining public datasets using opensource tools: Zeppelin, Spark and Juju
seoul_engineer
 
Efficiently Building Machine Learning Models for Predictive Maintenance in th...
Efficiently Building Machine Learning Models for Predictive Maintenance in th...Efficiently Building Machine Learning Models for Predictive Maintenance in th...
Efficiently Building Machine Learning Models for Predictive Maintenance in th...
Databricks
 
Bring Satellite and Drone Imagery into your Data Science Workflows
Bring Satellite and Drone Imagery into your Data Science WorkflowsBring Satellite and Drone Imagery into your Data Science Workflows
Bring Satellite and Drone Imagery into your Data Science Workflows
Databricks
 
Alluxio+Presto: An Architecture for Fast SQL in the Cloud
Alluxio+Presto: An Architecture for Fast SQL in the CloudAlluxio+Presto: An Architecture for Fast SQL in the Cloud
Alluxio+Presto: An Architecture for Fast SQL in the Cloud
Alluxio, Inc.
 
Trends for Big Data and Apache Spark in 2017 by Matei Zaharia
Trends for Big Data and Apache Spark in 2017 by Matei ZahariaTrends for Big Data and Apache Spark in 2017 by Matei Zaharia
Trends for Big Data and Apache Spark in 2017 by Matei Zaharia
Spark Summit
 
Spark Magic Building and Deploying a High Scale Product in 4 Months
Spark Magic Building and Deploying a High Scale Product in 4 MonthsSpark Magic Building and Deploying a High Scale Product in 4 Months
Spark Magic Building and Deploying a High Scale Product in 4 Months
tsliwowicz
 
Spark Summit EU talk by Tug Grall
Spark Summit EU talk by Tug GrallSpark Summit EU talk by Tug Grall
Spark Summit EU talk by Tug Grall
Spark Summit
 
Big Telco - Yousun Jeong
Big Telco - Yousun JeongBig Telco - Yousun Jeong
Big Telco - Yousun Jeong
Spark Summit
 
Lessons Learned from Modernizing USCIS Data Analytics Platform
Lessons Learned from Modernizing USCIS Data Analytics PlatformLessons Learned from Modernizing USCIS Data Analytics Platform
Lessons Learned from Modernizing USCIS Data Analytics Platform
Databricks
 
Dynamic DDL: Adding Structure to Streaming Data on the Fly with David Winters...
Dynamic DDL: Adding Structure to Streaming Data on the Fly with David Winters...Dynamic DDL: Adding Structure to Streaming Data on the Fly with David Winters...
Dynamic DDL: Adding Structure to Streaming Data on the Fly with David Winters...
Databricks
 

Similar to Spark_Intro_Syed_Academy (20)

Teaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Teaching Apache Spark: Demonstrations on the Databricks Cloud PlatformTeaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Teaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Yao Yao
 
Scaling Spark Workloads on YARN - Boulder/Denver July 2015
Scaling Spark Workloads on YARN - Boulder/Denver July 2015Scaling Spark Workloads on YARN - Boulder/Denver July 2015
Scaling Spark Workloads on YARN - Boulder/Denver July 2015
Mac Moore
 
Deploy Apache Spark™ on Rackspace OnMetal™ for Cloud Big Data Platform
Deploy Apache Spark™ on Rackspace OnMetal™ for Cloud Big Data PlatformDeploy Apache Spark™ on Rackspace OnMetal™ for Cloud Big Data Platform
Deploy Apache Spark™ on Rackspace OnMetal™ for Cloud Big Data Platform
Rackspace
 
Tech Spark Presentation
Tech Spark PresentationTech Spark Presentation
Tech Spark Presentation
Stephen Borg
 
Building a High Performance Analytics Platform
Building a High Performance Analytics PlatformBuilding a High Performance Analytics Platform
Building a High Performance Analytics Platform
Santanu Dey
 
Taboola Road To Scale With Apache Spark
Taboola Road To Scale With Apache SparkTaboola Road To Scale With Apache Spark
Taboola Road To Scale With Apache Spark
tsliwowicz
 
Apache Spark: The Next Gen toolset for Big Data Processing
Apache Spark: The Next Gen toolset for Big Data ProcessingApache Spark: The Next Gen toolset for Big Data Processing
Apache Spark: The Next Gen toolset for Big Data Processing
prajods
 
Spark introduction and architecture
Spark introduction and architectureSpark introduction and architecture
Spark introduction and architecture
Sohil Jain
 
Spark introduction and architecture
Spark introduction and architectureSpark introduction and architecture
Spark introduction and architecture
Sohil Jain
 
Intro to Apache Spark by CTO of Twingo
Intro to Apache Spark by CTO of TwingoIntro to Apache Spark by CTO of Twingo
Intro to Apache Spark by CTO of Twingo
MapR Technologies
 
Big Telco Real-Time Network Analytics
Big Telco Real-Time Network AnalyticsBig Telco Real-Time Network Analytics
Big Telco Real-Time Network Analytics
Yousun Jeong
 
Chirp 2010: Scaling Twitter
Chirp 2010: Scaling TwitterChirp 2010: Scaling Twitter
Chirp 2010: Scaling Twitter
John Adams
 
Processing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeekProcessing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeek
Venkata Naga Ravi
 
Tiny Batches, in the wine: Shiny New Bits in Spark Streaming
Tiny Batches, in the wine: Shiny New Bits in Spark StreamingTiny Batches, in the wine: Shiny New Bits in Spark Streaming
Tiny Batches, in the wine: Shiny New Bits in Spark Streaming
Paco Nathan
 
Apache Spark Fundamentals
Apache Spark FundamentalsApache Spark Fundamentals
Apache Spark Fundamentals
Zahra Eskandari
 
夏俊鸾:Spark——基于内存的下一代大数据分析框架
夏俊鸾:Spark——基于内存的下一代大数据分析框架夏俊鸾:Spark——基于内存的下一代大数据分析框架
夏俊鸾:Spark——基于内存的下一代大数据分析框架
hdhappy001
 
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsfPyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
sasuke20y4sh
 
Apache Spark - Lightning Fast Cluster Computing - Hyderabad Scalability Meetup
Apache Spark - Lightning Fast Cluster Computing - Hyderabad Scalability MeetupApache Spark - Lightning Fast Cluster Computing - Hyderabad Scalability Meetup
Apache Spark - Lightning Fast Cluster Computing - Hyderabad Scalability Meetup
Hyderabad Scalability Meetup
 
Dec6 meetup spark presentation
Dec6 meetup spark presentationDec6 meetup spark presentation
Dec6 meetup spark presentation
Ramesh Mudunuri
 
Apache Spark in Industry
Apache Spark in IndustryApache Spark in Industry
Apache Spark in Industry
Dorian Beganovic
 
Teaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Teaching Apache Spark: Demonstrations on the Databricks Cloud PlatformTeaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Teaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Yao Yao
 
Scaling Spark Workloads on YARN - Boulder/Denver July 2015
Scaling Spark Workloads on YARN - Boulder/Denver July 2015Scaling Spark Workloads on YARN - Boulder/Denver July 2015
Scaling Spark Workloads on YARN - Boulder/Denver July 2015
Mac Moore
 
Deploy Apache Spark™ on Rackspace OnMetal™ for Cloud Big Data Platform
Deploy Apache Spark™ on Rackspace OnMetal™ for Cloud Big Data PlatformDeploy Apache Spark™ on Rackspace OnMetal™ for Cloud Big Data Platform
Deploy Apache Spark™ on Rackspace OnMetal™ for Cloud Big Data Platform
Rackspace
 
Tech Spark Presentation
Tech Spark PresentationTech Spark Presentation
Tech Spark Presentation
Stephen Borg
 
Building a High Performance Analytics Platform
Building a High Performance Analytics PlatformBuilding a High Performance Analytics Platform
Building a High Performance Analytics Platform
Santanu Dey
 
Taboola Road To Scale With Apache Spark
Taboola Road To Scale With Apache SparkTaboola Road To Scale With Apache Spark
Taboola Road To Scale With Apache Spark
tsliwowicz
 
Apache Spark: The Next Gen toolset for Big Data Processing
Apache Spark: The Next Gen toolset for Big Data ProcessingApache Spark: The Next Gen toolset for Big Data Processing
Apache Spark: The Next Gen toolset for Big Data Processing
prajods
 
Spark introduction and architecture
Spark introduction and architectureSpark introduction and architecture
Spark introduction and architecture
Sohil Jain
 
Spark introduction and architecture
Spark introduction and architectureSpark introduction and architecture
Spark introduction and architecture
Sohil Jain
 
Intro to Apache Spark by CTO of Twingo
Intro to Apache Spark by CTO of TwingoIntro to Apache Spark by CTO of Twingo
Intro to Apache Spark by CTO of Twingo
MapR Technologies
 
Big Telco Real-Time Network Analytics
Big Telco Real-Time Network AnalyticsBig Telco Real-Time Network Analytics
Big Telco Real-Time Network Analytics
Yousun Jeong
 
Chirp 2010: Scaling Twitter
Chirp 2010: Scaling TwitterChirp 2010: Scaling Twitter
Chirp 2010: Scaling Twitter
John Adams
 
Processing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeekProcessing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeek
Venkata Naga Ravi
 
Tiny Batches, in the wine: Shiny New Bits in Spark Streaming
Tiny Batches, in the wine: Shiny New Bits in Spark StreamingTiny Batches, in the wine: Shiny New Bits in Spark Streaming
Tiny Batches, in the wine: Shiny New Bits in Spark Streaming
Paco Nathan
 
Apache Spark Fundamentals
Apache Spark FundamentalsApache Spark Fundamentals
Apache Spark Fundamentals
Zahra Eskandari
 
夏俊鸾:Spark——基于内存的下一代大数据分析框架
夏俊鸾:Spark——基于内存的下一代大数据分析框架夏俊鸾:Spark——基于内存的下一代大数据分析框架
夏俊鸾:Spark——基于内存的下一代大数据分析框架
hdhappy001
 
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsfPyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
sasuke20y4sh
 
Apache Spark - Lightning Fast Cluster Computing - Hyderabad Scalability Meetup
Apache Spark - Lightning Fast Cluster Computing - Hyderabad Scalability MeetupApache Spark - Lightning Fast Cluster Computing - Hyderabad Scalability Meetup
Apache Spark - Lightning Fast Cluster Computing - Hyderabad Scalability Meetup
Hyderabad Scalability Meetup
 
Dec6 meetup spark presentation
Dec6 meetup spark presentationDec6 meetup spark presentation
Dec6 meetup spark presentation
Ramesh Mudunuri
 

More from Syed Hadoop (6)

Kafka syed academy_v1_introduction
Kafka syed academy_v1_introductionKafka syed academy_v1_introduction
Kafka syed academy_v1_introduction
Syed Hadoop
 
Spark SQL In Depth www.syedacademy.com
Spark SQL In Depth www.syedacademy.comSpark SQL In Depth www.syedacademy.com
Spark SQL In Depth www.syedacademy.com
Syed Hadoop
 
Spark Streaming In Depth - www.syedacademy.com
Spark Streaming In Depth - www.syedacademy.comSpark Streaming In Depth - www.syedacademy.com
Spark Streaming In Depth - www.syedacademy.com
Syed Hadoop
 
Spark_RDD_SyedAcademy
Spark_RDD_SyedAcademySpark_RDD_SyedAcademy
Spark_RDD_SyedAcademy
Syed Hadoop
 
Hadoop Architecture in Depth
Hadoop Architecture in DepthHadoop Architecture in Depth
Hadoop Architecture in Depth
Syed Hadoop
 
Hadoop course content Syed Academy
Hadoop course content Syed AcademyHadoop course content Syed Academy
Hadoop course content Syed Academy
Syed Hadoop
 
Kafka syed academy_v1_introduction
Kafka syed academy_v1_introductionKafka syed academy_v1_introduction
Kafka syed academy_v1_introduction
Syed Hadoop
 
Spark SQL In Depth www.syedacademy.com
Spark SQL In Depth www.syedacademy.comSpark SQL In Depth www.syedacademy.com
Spark SQL In Depth www.syedacademy.com
Syed Hadoop
 
Spark Streaming In Depth - www.syedacademy.com
Spark Streaming In Depth - www.syedacademy.comSpark Streaming In Depth - www.syedacademy.com
Spark Streaming In Depth - www.syedacademy.com
Syed Hadoop
 
Spark_RDD_SyedAcademy
Spark_RDD_SyedAcademySpark_RDD_SyedAcademy
Spark_RDD_SyedAcademy
Syed Hadoop
 
Hadoop Architecture in Depth
Hadoop Architecture in DepthHadoop Architecture in Depth
Hadoop Architecture in Depth
Syed Hadoop
 
Hadoop course content Syed Academy
Hadoop course content Syed AcademyHadoop course content Syed Academy
Hadoop course content Syed Academy
Syed Hadoop
 

Recently uploaded (20)

Sequence Diagrams With Pictures (1).pptx
Sequence Diagrams With Pictures (1).pptxSequence Diagrams With Pictures (1).pptx
Sequence Diagrams With Pictures (1).pptx
aashrithakondapalli8
 
AEM User Group DACH - 2025 Inaugural Meeting
AEM User Group DACH - 2025 Inaugural MeetingAEM User Group DACH - 2025 Inaugural Meeting
AEM User Group DACH - 2025 Inaugural Meeting
jennaf3
 
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
Ranking Google
 
Serato DJ Pro Crack Latest Version 2025??
Serato DJ Pro Crack Latest Version 2025??Serato DJ Pro Crack Latest Version 2025??
Serato DJ Pro Crack Latest Version 2025??
Web Designer
 
NYC ACE 08-May-2025-Combined Presentation.pdf
NYC ACE 08-May-2025-Combined Presentation.pdfNYC ACE 08-May-2025-Combined Presentation.pdf
NYC ACE 08-May-2025-Combined Presentation.pdf
AUGNYC
 
The-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptx
The-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptxThe-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptx
The-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptx
james brownuae
 
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb ClarkDeploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Peter Caitens
 
Memory Management and Leaks in Postgres from pgext.day 2025
Memory Management and Leaks in Postgres from pgext.day 2025Memory Management and Leaks in Postgres from pgext.day 2025
Memory Management and Leaks in Postgres from pgext.day 2025
Phil Eaton
 
Reinventing Microservices Efficiency and Innovation with Single-Runtime
Reinventing Microservices Efficiency and Innovation with Single-RuntimeReinventing Microservices Efficiency and Innovation with Single-Runtime
Reinventing Microservices Efficiency and Innovation with Single-Runtime
Natan Silnitsky
 
Artificial hand using embedded system.pptx
Artificial hand using embedded system.pptxArtificial hand using embedded system.pptx
Artificial hand using embedded system.pptx
bhoomigowda12345
 
Mobile Application Developer Dubai | Custom App Solutions by Ajath
Mobile Application Developer Dubai | Custom App Solutions by AjathMobile Application Developer Dubai | Custom App Solutions by Ajath
Mobile Application Developer Dubai | Custom App Solutions by Ajath
Ajath Infotech Technologies LLC
 
Troubleshooting JVM Outages – 3 Fortune 500 case studies
Troubleshooting JVM Outages – 3 Fortune 500 case studiesTroubleshooting JVM Outages – 3 Fortune 500 case studies
Troubleshooting JVM Outages – 3 Fortune 500 case studies
Tier1 app
 
Adobe Media Encoder Crack FREE Download 2025
Adobe Media Encoder  Crack FREE Download 2025Adobe Media Encoder  Crack FREE Download 2025
Adobe Media Encoder Crack FREE Download 2025
zafranwaqar90
 
Orion Context Broker introduction 20250509
Orion Context Broker introduction 20250509Orion Context Broker introduction 20250509
Orion Context Broker introduction 20250509
Fermin Galan
 
How to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryErrorHow to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryError
Tier1 app
 
Why Tapitag Ranks Among the Best Digital Business Card Providers
Why Tapitag Ranks Among the Best Digital Business Card ProvidersWhy Tapitag Ranks Among the Best Digital Business Card Providers
Why Tapitag Ranks Among the Best Digital Business Card Providers
Tapitag
 
Time Estimation: Expert Tips & Proven Project Techniques
Time Estimation: Expert Tips & Proven Project TechniquesTime Estimation: Expert Tips & Proven Project Techniques
Time Estimation: Expert Tips & Proven Project Techniques
Livetecs LLC
 
Buy vs. Build: Unlocking the right path for your training tech
Buy vs. Build: Unlocking the right path for your training techBuy vs. Build: Unlocking the right path for your training tech
Buy vs. Build: Unlocking the right path for your training tech
Rustici Software
 
From Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
From Vibe Coding to Vibe Testing - Complete PowerPoint PresentationFrom Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
From Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
Shay Ginsbourg
 
wAIred_LearnWithOutAI_JCON_14052025.pptx
wAIred_LearnWithOutAI_JCON_14052025.pptxwAIred_LearnWithOutAI_JCON_14052025.pptx
wAIred_LearnWithOutAI_JCON_14052025.pptx
SimonedeGijt
 
Sequence Diagrams With Pictures (1).pptx
Sequence Diagrams With Pictures (1).pptxSequence Diagrams With Pictures (1).pptx
Sequence Diagrams With Pictures (1).pptx
aashrithakondapalli8
 
AEM User Group DACH - 2025 Inaugural Meeting
AEM User Group DACH - 2025 Inaugural MeetingAEM User Group DACH - 2025 Inaugural Meeting
AEM User Group DACH - 2025 Inaugural Meeting
jennaf3
 
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
Ranking Google
 
Serato DJ Pro Crack Latest Version 2025??
Serato DJ Pro Crack Latest Version 2025??Serato DJ Pro Crack Latest Version 2025??
Serato DJ Pro Crack Latest Version 2025??
Web Designer
 
NYC ACE 08-May-2025-Combined Presentation.pdf
NYC ACE 08-May-2025-Combined Presentation.pdfNYC ACE 08-May-2025-Combined Presentation.pdf
NYC ACE 08-May-2025-Combined Presentation.pdf
AUGNYC
 
The-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptx
The-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptxThe-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptx
The-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptx
james brownuae
 
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb ClarkDeploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Peter Caitens
 
Memory Management and Leaks in Postgres from pgext.day 2025
Memory Management and Leaks in Postgres from pgext.day 2025Memory Management and Leaks in Postgres from pgext.day 2025
Memory Management and Leaks in Postgres from pgext.day 2025
Phil Eaton
 
Reinventing Microservices Efficiency and Innovation with Single-Runtime
Reinventing Microservices Efficiency and Innovation with Single-RuntimeReinventing Microservices Efficiency and Innovation with Single-Runtime
Reinventing Microservices Efficiency and Innovation with Single-Runtime
Natan Silnitsky
 
Artificial hand using embedded system.pptx
Artificial hand using embedded system.pptxArtificial hand using embedded system.pptx
Artificial hand using embedded system.pptx
bhoomigowda12345
 
Mobile Application Developer Dubai | Custom App Solutions by Ajath
Mobile Application Developer Dubai | Custom App Solutions by AjathMobile Application Developer Dubai | Custom App Solutions by Ajath
Mobile Application Developer Dubai | Custom App Solutions by Ajath
Ajath Infotech Technologies LLC
 
Troubleshooting JVM Outages – 3 Fortune 500 case studies
Troubleshooting JVM Outages – 3 Fortune 500 case studiesTroubleshooting JVM Outages – 3 Fortune 500 case studies
Troubleshooting JVM Outages – 3 Fortune 500 case studies
Tier1 app
 
Adobe Media Encoder Crack FREE Download 2025
Adobe Media Encoder  Crack FREE Download 2025Adobe Media Encoder  Crack FREE Download 2025
Adobe Media Encoder Crack FREE Download 2025
zafranwaqar90
 
Orion Context Broker introduction 20250509
Orion Context Broker introduction 20250509Orion Context Broker introduction 20250509
Orion Context Broker introduction 20250509
Fermin Galan
 
How to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryErrorHow to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryError
Tier1 app
 
Why Tapitag Ranks Among the Best Digital Business Card Providers
Why Tapitag Ranks Among the Best Digital Business Card ProvidersWhy Tapitag Ranks Among the Best Digital Business Card Providers
Why Tapitag Ranks Among the Best Digital Business Card Providers
Tapitag
 
Time Estimation: Expert Tips & Proven Project Techniques
Time Estimation: Expert Tips & Proven Project TechniquesTime Estimation: Expert Tips & Proven Project Techniques
Time Estimation: Expert Tips & Proven Project Techniques
Livetecs LLC
 
Buy vs. Build: Unlocking the right path for your training tech
Buy vs. Build: Unlocking the right path for your training techBuy vs. Build: Unlocking the right path for your training tech
Buy vs. Build: Unlocking the right path for your training tech
Rustici Software
 
From Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
From Vibe Coding to Vibe Testing - Complete PowerPoint PresentationFrom Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
From Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
Shay Ginsbourg
 
wAIred_LearnWithOutAI_JCON_14052025.pptx
wAIred_LearnWithOutAI_JCON_14052025.pptxwAIred_LearnWithOutAI_JCON_14052025.pptx
wAIred_LearnWithOutAI_JCON_14052025.pptx
SimonedeGijt
 

Spark_Intro_Syed_Academy

  • 1. Apache Spark Syed Solutions Engineer - Big Data mail.syed786@gmail.com info.syedacademy@gmail.com +91-9030477368
  • 2. History Developed in 2009 at UC Berkeley AMPLab. ● Open sourced in 2010. ● Spark becomes one of the largest big-data projects with more 400 contributors in 50+ organizations such as: – Databricks, Yahoo!, Intel, Cloudera, IBM, …
  • 3. • Fast and general cluster computing system interoperable with Hadoop datasets. What is Spark?
  • 4. Where Does Big Data Come From? It’s all happening online – could record every: » Click » Ad impression » Billing event » Fast Forward, pause,… » Server request » Transaction » Network message » Fault » Facebook » Instagram » TripAdvisor » Twitter » YouTube »…
  • 5. Graph Data Lots of interesting data has a graph structure: • Social networks • Telecommunication Networks • Computer Networks • Road networks • Collaborations/Relationships • … Some of these graphs can get quite large (e.g., Facebook user graph) Log Files – Apache Web Server Log
  • 6. Why Apache Spark? General purpose cluster computing system • Originally developed at UC Berkeley, now one of the largest Apache projects • Typically faster than Hadoop due to main-memory processing • High-level APIs in Java, Scala, Python and R Functionality for: • Map/Reduce • SQL processing • Real-time stream processing • Machine learning • Graph processing
  • 7. Apache Spark EcoSystem • Apache Spark • RDDs • Spark SQL • Once known as Shark before completely integrated into Spark • For SQL, structured and semi-structured data processing • Spark Streaming • Processing of live data streams • MLlib/ML • Machine Learning Algorithms • GraphX • Graph Processing
  • 8. MapReduce vs Spark PIG HIVE MAHOUT (machine learning) MapReduce
  • 14. Programming Models • MapReduce – 50 lines of code • Spark – 1 line of code
  • 18. MapReduce Bottlenecks and Improvements • Bottlenecks • MapReduce is a very I/O heavy operation • Map phase needs to read from disk then write back out • Reduce phase needs to read from disk and then write back out • How can we improve it? • RAM is becoming very cheap and abundant • Use RAM for in-data sharing
  • 19. MapReduce vs. Spark (Performance) MapReduce Record Spark Record Spark Record 1PB Data Size 102.5 TB 100 TB 1000 TB # Nodes 2100 206 190 # Cores 50400 physical 6592 virtualized 6080 virtualized Elapsed Time 72 mins 23 mins 234 mins Sort rate 1.42 TB/min 4.27 TB/min 4.27 TB/min Sort rate/node 0.67 GB/min 20.7 GB/min 22.5 GB/min
  • 22. RDDs • Primary abstraction object used by Apache Spark • Resilient Distributed Dataset • Fault-tolerant • Collection of elements that can be operated on in parallel • Distributed collection of data from any source • Contained in an RDD: • Set of dependencies on parent RDDs • Lineage (Directed Acyclic Graph – DAG) • Set of partitions • Atomic pieces of a dataset • A function for computing the RDD based on its parents • Metadata about its partitioning scheme and data placement • RDDs are Immutable • Allows for more effective fault tolerance • Intended to support abstract datasets while also maintain MapReduce properties like automatic fault tolerance, locality-aware scheduling and scalability.
  • 24. Spark Streaming • Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams
  翻译: