At the Dublin Fashion Insights Centre, we are exploring methods of categorising the web into a set of known fashion related topics. This raises questions such as: How many fashion related topics are there? How closely are they related to each other, or to other non-fashion topics? Furthermore, what topic hierarchies exist in this landscape? Using Clojure and MLlib to harness the data available from crowd-sourced websites such as DMOZ (a categorisation of millions of websites) and Common Crawl (a monthly crawl of billions of websites), we are answering these questions to understand fashion in a quantitative manner. The latest generation of big data tools such as Apache Spark routinely handle petabytes of data while also addressing real-world realities like node and network failures. Spark's transformations and operations on data sets are a natural fit with Clojure's everyday use of transformations and reductions. Spark MLlib's excellent implementations of distributed machine learning algorithms puts the power of large-scale analytics in the hands of Clojure developers. At Zalando's Dublin Fashion Insights Centre, we're using the Clojure bindings to Spark and MLlib to answer fashion-related questions that until recently have been nearly impossible to answer quantitatively. Hunter Kelly @retnuh tech.zalando.com