Central processing unit and stack organization r013arunachalamr16
The document discusses various aspects of computer architecture including the central processing unit (CPU), components of the CPU, register organization, control unit operation, addressing modes, and instruction formats. It provides details on general register organization, ALU control, register and memory stack organization, one-address, two-address, and three-address instructions, and different types of addressing modes like direct, indirect, relative, indexed, and register addressing modes. Examples are given to illustrate these concepts.
This document provides an overview of read-only memory (ROM) and its variations. It discusses that ROM is a type of memory that retains data permanently, even when power is removed. The document describes the basic components and functioning of ROM, including its input lines, output lines, and decoded minterms. It then explains different types of ROM such as PROM, EPROM, EEPROM, and flash memory, focusing on their ability to be programmed and erased. The document provides details on how each type stores and retrieves data, and their typical access times.
80386_ Bus Cycles & System Architecture.pdfrupalidalvi10
The document discusses the 80386 microprocessor. It describes the processor state after reset, including contents of registers. It discusses the processor's pin descriptions and functional diagram. It covers I/O addressing methods and I/O instructions. It also summarizes the system architecture components like registers, memory management, control registers, debug registers, test registers and their functions. Finally, it lists some systems instructions related to addressing descriptor tables, multitasking, I/O, and interrupt control.
binary tree in data structure .this is ppt on the topic of bianry tree.binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data structure binary tree in data
「解説資料」MetaFormer is Actually What You Need for VisionTakumi Ohkuma
'MetaFormer is Actually What You Need for Vision' の論文の解説資料
近年画像認識において高い精度を実現しているVision TransformerやMLP-Mixer等の非CNN系のモデルを、Embedding、Tokenの混合、Channel毎のMLP の3つを構成要素としてもつモデル群「MetaFormer」として一般化し、このMetaFormerが高い精度を実現する為に必要な枠組みあると主張した研究。
MetaFormerの枠組みにおいて、その構成要素の一つである「Tokenの混合」としてAttentionを採用したものがTransformer、MLPを採用したものがMLP-Mixer等のMLP系モデルである。
さらに、本研究ではこのTokenの混合として、極力シンプルな演算であるPoolingを採用した「PoolFormer」を提案し、複数の画像認識タスクで従来のモデルに劣らない精度を実現した。
PoolFormerはMetaFormerとしての最低限の機能しか持ち合わせていないにもかかわらず高い精度を達成したことから、MetaFormerの枠組み自体が画像認識に対して高いパフォーマンスを発揮できると主張している。
「解説資料」MetaFormer is Actually What You Need for VisionTakumi Ohkuma
'MetaFormer is Actually What You Need for Vision' の論文の解説資料
近年画像認識において高い精度を実現しているVision TransformerやMLP-Mixer等の非CNN系のモデルを、Embedding、Tokenの混合、Channel毎のMLP の3つを構成要素としてもつモデル群「MetaFormer」として一般化し、このMetaFormerが高い精度を実現する為に必要な枠組みあると主張した研究。
MetaFormerの枠組みにおいて、その構成要素の一つである「Tokenの混合」としてAttentionを採用したものがTransformer、MLPを採用したものがMLP-Mixer等のMLP系モデルである。
さらに、本研究ではこのTokenの混合として、極力シンプルな演算であるPoolingを採用した「PoolFormer」を提案し、複数の画像認識タスクで従来のモデルに劣らない精度を実現した。
PoolFormerはMetaFormerとしての最低限の機能しか持ち合わせていないにもかかわらず高い精度を達成したことから、MetaFormerの枠組み自体が画像認識に対して高いパフォーマンスを発揮できると主張している。
3. 書誌情報
題名:Set Transformer: A Framework for Attention-based
Permutation-Invariant Neural Network
出典:ICML 2019
著者:Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R.
Kosiorek, Seungiin Choi, Yee Whye Teh
22. Set Transformerの全体構造
SAB, ISAB, PAMを単層もしくは多層に重ねてSet Transformer全体を構築する。
SAB or ISAB
SAB or ISAB
𝑃𝑀𝐴1
FC
SAB or ISAB
SAB or ISAB
𝑃𝑀𝐴4
FC
SAB or ISAB
SAB or ISAB
SAB or ISAB
例1 例2
34. 参考文献
[1] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information
processing systems. 2017.
[2] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing
systems. 2017.
[3] Yang, Bo, et al. "Robust attentional aggregation of deep feature sets for multi-view
3D reconstruction." International Journal of Computer Vision 128.1 (2020): 53-73.
[4] Lake, B. M., et al. “Human-level concept learning through probabilistic program
induction.” Science, 350(6266):1332–1338, 2015
[5] Karen Simonyan et al. “Very deep convolutional networks for large-scale image
recognition” In proc of ICLR 2014
[6] Chang, A. X., et al “An information-rich 3D model repository.”, arXiv:1512.03012,
2015.