SlideShare a Scribd company logo
Consensus in Eventually
Consistent Databases
Duarte Nunes
Software Engineer, ScyllaDB
Presenter bio
Duarte is a Software Engineer working on Scylla. He has a
background in concurrent programming, distributed systems
and low-latency software. Prior to ScyllaDB, he worked on
distributed network virtualization.
Consensus
Definition
“The process by which we reach agreement over system state
between unreliable machines connected by asynchronous
networks”
Consensus Protocols
▪ Strong consistency guarantees about the underlying data
Consensus Protocols
▪ Strong consistency guarantees about the underlying data
▪ Leveraged to implement Replicated State Machines
• A set of replicas to work together as a coherent unit
Consensus Protocols
▪ Strong consistency guarantees about the underlying data
▪ Leveraged to implement Replicated State Machines
• A set of replicas to work together as a coherent unit
▪ Tolerate non-byzantine failures
• 2F + 1 nodes to tolerate F failures
Consensus Protocols
▪ Strong consistency guarantees about the underlying data
▪ Leveraged to implement Replicated State Machines
• A set of replicas to work together as a coherent unit
▪ Tolerate non-byzantine failures
• 2F + 1 nodes to tolerate F failures
▪ A consensus protocol round advances the underlying state
▪ Stability
• If a value is decided at a replica p, it remains decided forever
▪ Agreement
• No two replicas should decide differently
▪ Validity
• If a value is decided, this value must have been proposed by at
least one of the replicas
▪ Termination
• Eventually, a decision is reached on all correct replicas
Guarantees
Motivation
Strong consistency
▪ Strong guarantees enable more use cases
Strong consistency
▪ Strong guarantees enable more use cases
• Uniqueness constraints
Strong consistency
▪ Strong guarantees enable more use cases
• Uniqueness constraints
• Read-modify-write accesses
Strong consistency
▪ Strong guarantees enable more use cases
• Uniqueness constraints
• Read-modify-write accesses
• All-or-nothing writes
Strong consistency
▪ Strong guarantees enable more use cases
• Uniqueness constraints
• Read-modify-write accesses
• All-or-nothing writes
▪ Opt-in, due to inherent performance costs
Lightweight Transactions (LWT)
▪ Per-partition strong consistency
Lightweight Transactions (LWT)
▪ Per-partition strong consistency
▪ Essentially, a distributed compare-and-swap
• INSERT ... IF NOT EXISTS
DELETE ... IF EXISTS
DELETE ... IF col_a = ? AND col_b = ?
UPDATE ... IF col_a = ? AND col_b = ?
Lightweight Transactions (LWT)
▪ Per-partition strong consistency
▪ Essentially, a distributed compare-and-swap
• INSERT ... IF NOT EXISTS
DELETE ... IF EXISTS
DELETE ... IF col_a = ? AND col_b = ?
UPDATE ... IF col_a = ? AND col_b = ?
▪ Fast-path operation warranting high performance and
availability
Lightweight Transactions (LWT)
▪ Per-partition strong consistency
▪ Essentially, a distributed compare-and-swap
• INSERT ... IF NOT EXISTS
DELETE ... IF EXISTS
DELETE ... IF col_a = ? AND col_b = ?
UPDATE ... IF col_a = ? AND col_b = ?
▪ Fast-path operation warranting high performance and
availability
▪ Requires internal read-before-write
Choosing an Algorithm
Design Space
▪ Understandability
Paxos Made Live
“There are significant gaps between the description of the Paxos
algorithm and the needs of a real-world system.
In order to build a real-world system, an expert needs to use
numerous ideas scattered in the literature and make several
relatively small protocol extensions.
The cumulative effort will be substantial and the final system will
be based on an unproven protocol.”
By Google, when building Chubby using Multi-Paxos and SMR
Design Space
▪ Understandability
▪ Experienced & successful, well-known usages
Design Space
▪ Understandability
▪ Experienced & successful, well-known usages
▪ Latency, RTTs to agreement
Design Space
▪ Understandability
▪ Experienced & successful, well-known usages
▪ Latency, RTTs to agreement
▪ General performance (e.g., batching opportunities)
Design Space
▪ Understandability
▪ Experienced & successful, well-known usages
▪ Latency, RTTs to agreement
▪ General performance (e.g., batching opportunities)
▪ 🔥🔥🔥🔥🔥
Leader vs RTTs
▪ Any node can decide a value
• At least 2RTTs
• Classical Paxos, CASPaxos
Leader vs RTTs
▪ Any node can decide a value
• At least 2RTTs
• Classical Paxos, CASPaxos
▪ Leader election
• 1 RTT, but leader can limit throughput
• Multi-paxos, Raft, Zab
Challenges
▪ Dealing with limited storage capacity
▪ Effectively handling read-only requests
▪ Dynamic membership and cluster reconfiguration
▪ Multi-key transaction support
▪ Acceptable performance over the WAN
▪ Formal and empirical validation of its safety
Raft
▪ Focused on understandability
▪ Widely used
▪ Amenable to nice optimizations
▪ Strong leadership
▪ For LWT, leader does read-before-write
▪ Log easily compacted in our case
Raft states
Follower
Candidate
Leader
Guarantees (1/2)
▪ Election Safety
• At most one leader can be elected in a given term
▪ Leader Append-Only
• A leader only appends new entries to its log
▪ Log Matching
• If two logs contain an entry with the same index and term, then the
logs are identical in all entries up through the given index
Guarantees (2/2)
▪ Leader Completeness
• If a log entry is committed in a given term, then that entry will be
present in the logs of the leaders for all higher-numbered terms
▪ State Machine Safety
• If a server has applied a log entry at a given index to its state
machine, no other server will ever apply a different log entry for the
same index
Scylla Raft
Overview
Node
Group
Keyspace
Vnode
Design
▪ A Scylla node participates in more than one group
• Leader failures affects only a subset of operations
• Increased concurrency
▪ Each group on a node is itself sharded
• A shard handles a subset of the operations of the group
• Impacts how logs are organized
Organization
Log
Core Raft
Database
State
RPC
Log
Core Raft
Database
State
RPC
Group 0
Group N - 1
Organization
Shard 0
Shard N - 1
...
Log
Core Raft
Database
State
RPC
Log
Core Raft
Database
State
RPC
Group 0
Group N - 1
Organization
Heartbeats
Shard 0
Shard N - 1
...
Log
Core Raft
Database
State
RPC
Log
Core Raft
Database
State
RPC
Group 0
Group N - 1
Write path (simplified)
1. lock() locked_cell[]
7. Release locks
mutation
mutation
restrictions
Log
RPC
...
3. Match
4. Append
if matched
cell_locker
2. query()
5. Replicate to majority
6. apply()
Node N, Shard S
Database
Scylla-specific constraints
▪ Sharding
• State explosion if groups are per-shard
Scylla-specific constraints
▪ Sharding
• State explosion if groups are per-shard
▪ Heterogeneous nodes
Scylla-specific constraints
▪ Sharding
• State explosion if groups are per-shard
▪ Heterogeneous nodes
RPC
Leader
Shard 0
RPC
Follower
Shard 0
Scylla-specific constraints
▪ Sharding
• State explosion if groups are per-shard
▪ Heterogeneous nodes
RPC
Leader
Shard 0
RPC
Shard 1
RPC
Follower
Shard 0
Leader
Scylla-specific constraints
▪ Sharding
• State explosion if groups are per-shard
▪ Heterogeneous nodes
▪ Resharding
Transactions
Another LWT constraint
▪ LOCAL_SERIAL consistency level
• Precludes cross-DC groups
• Each DC has its own group for a token range
• Need agreement between two groups
▪ More up-front work, but worth it later
• Leveraged for multi-partition transactions
Agreement
Node
Group
Keyspace
Vnode
Agreement
Internal Use Cases
Concurrent schema changes
▪ Schemas changes are carried out locally and then propagated
throughout the cluster
Concurrent schema changes
▪ Schemas changes are carried out locally and then propagated
throughout the cluster
▪ No protection against concurrent schema changes
• Different IDs even if the schema is the same
• Cluster-wide order of changes is not enforced
Distributed schema tables
CREATE TABLE ks.t (
p int,
x my_type.
PRIMARY KEY (p));
DROP TYPE ks.my_type;
Distributed schema tables
CREATE TABLE ks.t (
p int,
x my_type.
PRIMARY KEY (p));
DROP TYPE ks.my_type;
Range movements
▪ Concurrent range operations can select overlapping token
ranges
Range movements
▪ Concurrent range operations can select overlapping token
ranges
▪ Token selection is not optimal
Range movements
▪ Concurrent range operations can select overlapping token
ranges
▪ Token selection is not optimal
▪ Can’t use a partitioning approach
Range movements
▪ Concurrent range operations can select overlapping token
ranges
▪ Token selection is not optimal
▪ Can’t use a partitioning approach
• Need to centralize token selection
Global Group
Specific Group
Consistent materialized views
▪ Views are updated asynchronously
• Preserves base replica availability
Consistent materialized views
▪ Views are updated asynchronously
• Preserves base replica availability
▪ Can leverage multi-key transactions
• Base and view are both updated, or none are
Thank You
Any Questions ?
Please stay in touch
duarte@scylladb.com
@duarte_nunes
Ad

More Related Content

What's hot (20)

My first 90 days with ClickHouse.pdf
My first 90 days with ClickHouse.pdfMy first 90 days with ClickHouse.pdf
My first 90 days with ClickHouse.pdf
Alkin Tezuysal
 
Spark SQL Join Improvement at Facebook
Spark SQL Join Improvement at FacebookSpark SQL Join Improvement at Facebook
Spark SQL Join Improvement at Facebook
Databricks
 
Common Strategies for Improving Performance on Your Delta Lakehouse
Common Strategies for Improving Performance on Your Delta LakehouseCommon Strategies for Improving Performance on Your Delta Lakehouse
Common Strategies for Improving Performance on Your Delta Lakehouse
Databricks
 
Parquet performance tuning: the missing guide
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue
 
HPC Best Practices: Application Performance Optimization
HPC Best Practices: Application Performance OptimizationHPC Best Practices: Application Performance Optimization
HPC Best Practices: Application Performance Optimization
inside-BigData.com
 
PCIe BUS: A State-of-the-Art-Review
PCIe BUS: A State-of-the-Art-ReviewPCIe BUS: A State-of-the-Art-Review
PCIe BUS: A State-of-the-Art-Review
IOSRJVSP
 
A64fx and Fugaku - A Game Changing, HPC / AI Optimized Arm CPU to enable Exas...
A64fx and Fugaku - A Game Changing, HPC / AI Optimized Arm CPU to enable Exas...A64fx and Fugaku - A Game Changing, HPC / AI Optimized Arm CPU to enable Exas...
A64fx and Fugaku - A Game Changing, HPC / AI Optimized Arm CPU to enable Exas...
inside-BigData.com
 
5 Steps to PostgreSQL Performance
5 Steps to PostgreSQL Performance5 Steps to PostgreSQL Performance
5 Steps to PostgreSQL Performance
Command Prompt., Inc
 
Scalable Filesystem Metadata Services with RocksDB
Scalable Filesystem Metadata Services with RocksDBScalable Filesystem Metadata Services with RocksDB
Scalable Filesystem Metadata Services with RocksDB
Alluxio, Inc.
 
PCIe and PCIe driver in WEC7 (Windows Embedded compact 7)
PCIe and PCIe driver in WEC7 (Windows Embedded compact 7)PCIe and PCIe driver in WEC7 (Windows Embedded compact 7)
PCIe and PCIe driver in WEC7 (Windows Embedded compact 7)
gnkeshava
 
SRE Demystified - 16 - NALSD - Non-Abstract Large System Design
SRE Demystified - 16 - NALSD - Non-Abstract Large System DesignSRE Demystified - 16 - NALSD - Non-Abstract Large System Design
SRE Demystified - 16 - NALSD - Non-Abstract Large System Design
Dr Ganesh Iyer
 
FPGAs : An Overview
FPGAs : An OverviewFPGAs : An Overview
FPGAs : An Overview
Sanjiv Malik
 
Introducing Galera 3.0
Introducing Galera 3.0Introducing Galera 3.0
Introducing Galera 3.0
Codership Oy - Creators of Galera Cluster
 
Julien Simon - Deep Dive - Quantizing LLMs
Julien Simon - Deep Dive - Quantizing LLMsJulien Simon - Deep Dive - Quantizing LLMs
Julien Simon - Deep Dive - Quantizing LLMs
Julien SIMON
 
PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」
PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」
PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」
PC Cluster Consortium
 
Book Preview: A Practical Introduction to the Xilinx Zynq-7000 Adaptive SoC
Book Preview: A Practical Introduction to the Xilinx Zynq-7000 Adaptive SoCBook Preview: A Practical Introduction to the Xilinx Zynq-7000 Adaptive SoC
Book Preview: A Practical Introduction to the Xilinx Zynq-7000 Adaptive SoC
Derek Murray
 
Introduction to spark
Introduction to sparkIntroduction to spark
Introduction to spark
Duyhai Doan
 
E-Commerce search with Elasticsearch
E-Commerce search with ElasticsearchE-Commerce search with Elasticsearch
E-Commerce search with Elasticsearch
Yevhen Shyshkin
 
On Improving Broadcast Joins in Apache Spark SQL
On Improving Broadcast Joins in Apache Spark SQLOn Improving Broadcast Joins in Apache Spark SQL
On Improving Broadcast Joins in Apache Spark SQL
Databricks
 
Optimizing S3 Write-heavy Spark workloads
Optimizing S3 Write-heavy Spark workloadsOptimizing S3 Write-heavy Spark workloads
Optimizing S3 Write-heavy Spark workloads
datamantra
 
My first 90 days with ClickHouse.pdf
My first 90 days with ClickHouse.pdfMy first 90 days with ClickHouse.pdf
My first 90 days with ClickHouse.pdf
Alkin Tezuysal
 
Spark SQL Join Improvement at Facebook
Spark SQL Join Improvement at FacebookSpark SQL Join Improvement at Facebook
Spark SQL Join Improvement at Facebook
Databricks
 
Common Strategies for Improving Performance on Your Delta Lakehouse
Common Strategies for Improving Performance on Your Delta LakehouseCommon Strategies for Improving Performance on Your Delta Lakehouse
Common Strategies for Improving Performance on Your Delta Lakehouse
Databricks
 
Parquet performance tuning: the missing guide
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue
 
HPC Best Practices: Application Performance Optimization
HPC Best Practices: Application Performance OptimizationHPC Best Practices: Application Performance Optimization
HPC Best Practices: Application Performance Optimization
inside-BigData.com
 
PCIe BUS: A State-of-the-Art-Review
PCIe BUS: A State-of-the-Art-ReviewPCIe BUS: A State-of-the-Art-Review
PCIe BUS: A State-of-the-Art-Review
IOSRJVSP
 
A64fx and Fugaku - A Game Changing, HPC / AI Optimized Arm CPU to enable Exas...
A64fx and Fugaku - A Game Changing, HPC / AI Optimized Arm CPU to enable Exas...A64fx and Fugaku - A Game Changing, HPC / AI Optimized Arm CPU to enable Exas...
A64fx and Fugaku - A Game Changing, HPC / AI Optimized Arm CPU to enable Exas...
inside-BigData.com
 
Scalable Filesystem Metadata Services with RocksDB
Scalable Filesystem Metadata Services with RocksDBScalable Filesystem Metadata Services with RocksDB
Scalable Filesystem Metadata Services with RocksDB
Alluxio, Inc.
 
PCIe and PCIe driver in WEC7 (Windows Embedded compact 7)
PCIe and PCIe driver in WEC7 (Windows Embedded compact 7)PCIe and PCIe driver in WEC7 (Windows Embedded compact 7)
PCIe and PCIe driver in WEC7 (Windows Embedded compact 7)
gnkeshava
 
SRE Demystified - 16 - NALSD - Non-Abstract Large System Design
SRE Demystified - 16 - NALSD - Non-Abstract Large System DesignSRE Demystified - 16 - NALSD - Non-Abstract Large System Design
SRE Demystified - 16 - NALSD - Non-Abstract Large System Design
Dr Ganesh Iyer
 
FPGAs : An Overview
FPGAs : An OverviewFPGAs : An Overview
FPGAs : An Overview
Sanjiv Malik
 
Julien Simon - Deep Dive - Quantizing LLMs
Julien Simon - Deep Dive - Quantizing LLMsJulien Simon - Deep Dive - Quantizing LLMs
Julien Simon - Deep Dive - Quantizing LLMs
Julien SIMON
 
PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」
PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」
PCCC22:日本AMD株式会社 テーマ1「第4世代AMD EPYC™ プロセッサー (Genoa) の概要」
PC Cluster Consortium
 
Book Preview: A Practical Introduction to the Xilinx Zynq-7000 Adaptive SoC
Book Preview: A Practical Introduction to the Xilinx Zynq-7000 Adaptive SoCBook Preview: A Practical Introduction to the Xilinx Zynq-7000 Adaptive SoC
Book Preview: A Practical Introduction to the Xilinx Zynq-7000 Adaptive SoC
Derek Murray
 
Introduction to spark
Introduction to sparkIntroduction to spark
Introduction to spark
Duyhai Doan
 
E-Commerce search with Elasticsearch
E-Commerce search with ElasticsearchE-Commerce search with Elasticsearch
E-Commerce search with Elasticsearch
Yevhen Shyshkin
 
On Improving Broadcast Joins in Apache Spark SQL
On Improving Broadcast Joins in Apache Spark SQLOn Improving Broadcast Joins in Apache Spark SQL
On Improving Broadcast Joins in Apache Spark SQL
Databricks
 
Optimizing S3 Write-heavy Spark workloads
Optimizing S3 Write-heavy Spark workloadsOptimizing S3 Write-heavy Spark workloads
Optimizing S3 Write-heavy Spark workloads
datamantra
 

Similar to Scylla Summit 2018: Consensus in Eventually Consistent Databases (20)

Jay Kreps on Project Voldemort Scaling Simple Storage At LinkedIn
Jay Kreps on Project Voldemort Scaling Simple Storage At LinkedInJay Kreps on Project Voldemort Scaling Simple Storage At LinkedIn
Jay Kreps on Project Voldemort Scaling Simple Storage At LinkedIn
LinkedIn
 
Navigating Transactions: ACID Complexity in Modern Databases
Navigating Transactions: ACID Complexity in Modern DatabasesNavigating Transactions: ACID Complexity in Modern Databases
Navigating Transactions: ACID Complexity in Modern Databases
Shivji Kumar Jha
 
Navigating Transactions: ACID Complexity in Modern Databases- Mydbops Open So...
Navigating Transactions: ACID Complexity in Modern Databases- Mydbops Open So...Navigating Transactions: ACID Complexity in Modern Databases- Mydbops Open So...
Navigating Transactions: ACID Complexity in Modern Databases- Mydbops Open So...
Mydbops
 
Using galera replication to create geo distributed clusters on the wan
Using galera replication to create geo distributed clusters on the wanUsing galera replication to create geo distributed clusters on the wan
Using galera replication to create geo distributed clusters on the wan
Codership Oy - Creators of Galera Cluster
 
Using galera replication to create geo distributed clusters on the wan
Using galera replication to create geo distributed clusters on the wanUsing galera replication to create geo distributed clusters on the wan
Using galera replication to create geo distributed clusters on the wan
Sakari Keskitalo
 
Using galera replication to create geo distributed clusters on the wan
Using galera replication to create geo distributed clusters on the wanUsing galera replication to create geo distributed clusters on the wan
Using galera replication to create geo distributed clusters on the wan
Sakari Keskitalo
 
Data Consitency Patterns in Cloud Native Applications
Data Consitency Patterns in Cloud Native ApplicationsData Consitency Patterns in Cloud Native Applications
Data Consitency Patterns in Cloud Native Applications
Ryan Knight
 
Everything you always wanted to know about Distributed databases, at devoxx l...
Everything you always wanted to know about Distributed databases, at devoxx l...Everything you always wanted to know about Distributed databases, at devoxx l...
Everything you always wanted to know about Distributed databases, at devoxx l...
javier ramirez
 
Leveraging Endpoint Flexibility in Data-Intensive Clusters
Leveraging Endpoint Flexibility in Data-Intensive ClustersLeveraging Endpoint Flexibility in Data-Intensive Clusters
Leveraging Endpoint Flexibility in Data-Intensive Clusters
Ran Ziv
 
Scalability, Availability & Stability Patterns
Scalability, Availability & Stability PatternsScalability, Availability & Stability Patterns
Scalability, Availability & Stability Patterns
Jonas Bonér
 
The Highs and Lows of Stateful Containers
The Highs and Lows of Stateful ContainersThe Highs and Lows of Stateful Containers
The Highs and Lows of Stateful Containers
C4Media
 
Container Attached Storage with OpenEBS - CNCF Paris Meetup
Container Attached Storage with OpenEBS - CNCF Paris MeetupContainer Attached Storage with OpenEBS - CNCF Paris Meetup
Container Attached Storage with OpenEBS - CNCF Paris Meetup
MayaData Inc
 
Solving k8s persistent workloads using k8s DevOps style
Solving k8s persistent workloads using k8s DevOps styleSolving k8s persistent workloads using k8s DevOps style
Solving k8s persistent workloads using k8s DevOps style
MayaData
 
Scalable and Available, Patterns for Success
Scalable and Available, Patterns for SuccessScalable and Available, Patterns for Success
Scalable and Available, Patterns for Success
Derek Collison
 
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #2: Galera Cluster
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #2: Galera ClusterWebinar Slides: MySQL HA/DR/Geo-Scale - High Noon #2: Galera Cluster
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #2: Galera Cluster
Continuent
 
Data Engineering for Data Scientists
Data Engineering for Data Scientists Data Engineering for Data Scientists
Data Engineering for Data Scientists
jlacefie
 
Select Stars: A DBA's Guide to Azure Cosmos DB (Chicago Suburban SQL Server U...
Select Stars: A DBA's Guide to Azure Cosmos DB (Chicago Suburban SQL Server U...Select Stars: A DBA's Guide to Azure Cosmos DB (Chicago Suburban SQL Server U...
Select Stars: A DBA's Guide to Azure Cosmos DB (Chicago Suburban SQL Server U...
Bob Pusateri
 
OpenStack Cinder, Implementation Today and New Trends for Tomorrow
OpenStack Cinder, Implementation Today and New Trends for TomorrowOpenStack Cinder, Implementation Today and New Trends for Tomorrow
OpenStack Cinder, Implementation Today and New Trends for Tomorrow
Ed Balduf
 
The Good, The Bad, and The Avro (Graham Stirling, Saxo Bank and David Navalho...
The Good, The Bad, and The Avro (Graham Stirling, Saxo Bank and David Navalho...The Good, The Bad, and The Avro (Graham Stirling, Saxo Bank and David Navalho...
The Good, The Bad, and The Avro (Graham Stirling, Saxo Bank and David Navalho...
confluent
 
Design Patterns for Distributed Non-Relational Databases
Design Patterns for Distributed Non-Relational DatabasesDesign Patterns for Distributed Non-Relational Databases
Design Patterns for Distributed Non-Relational Databases
guestdfd1ec
 
Jay Kreps on Project Voldemort Scaling Simple Storage At LinkedIn
Jay Kreps on Project Voldemort Scaling Simple Storage At LinkedInJay Kreps on Project Voldemort Scaling Simple Storage At LinkedIn
Jay Kreps on Project Voldemort Scaling Simple Storage At LinkedIn
LinkedIn
 
Navigating Transactions: ACID Complexity in Modern Databases
Navigating Transactions: ACID Complexity in Modern DatabasesNavigating Transactions: ACID Complexity in Modern Databases
Navigating Transactions: ACID Complexity in Modern Databases
Shivji Kumar Jha
 
Navigating Transactions: ACID Complexity in Modern Databases- Mydbops Open So...
Navigating Transactions: ACID Complexity in Modern Databases- Mydbops Open So...Navigating Transactions: ACID Complexity in Modern Databases- Mydbops Open So...
Navigating Transactions: ACID Complexity in Modern Databases- Mydbops Open So...
Mydbops
 
Using galera replication to create geo distributed clusters on the wan
Using galera replication to create geo distributed clusters on the wanUsing galera replication to create geo distributed clusters on the wan
Using galera replication to create geo distributed clusters on the wan
Sakari Keskitalo
 
Using galera replication to create geo distributed clusters on the wan
Using galera replication to create geo distributed clusters on the wanUsing galera replication to create geo distributed clusters on the wan
Using galera replication to create geo distributed clusters on the wan
Sakari Keskitalo
 
Data Consitency Patterns in Cloud Native Applications
Data Consitency Patterns in Cloud Native ApplicationsData Consitency Patterns in Cloud Native Applications
Data Consitency Patterns in Cloud Native Applications
Ryan Knight
 
Everything you always wanted to know about Distributed databases, at devoxx l...
Everything you always wanted to know about Distributed databases, at devoxx l...Everything you always wanted to know about Distributed databases, at devoxx l...
Everything you always wanted to know about Distributed databases, at devoxx l...
javier ramirez
 
Leveraging Endpoint Flexibility in Data-Intensive Clusters
Leveraging Endpoint Flexibility in Data-Intensive ClustersLeveraging Endpoint Flexibility in Data-Intensive Clusters
Leveraging Endpoint Flexibility in Data-Intensive Clusters
Ran Ziv
 
Scalability, Availability & Stability Patterns
Scalability, Availability & Stability PatternsScalability, Availability & Stability Patterns
Scalability, Availability & Stability Patterns
Jonas Bonér
 
The Highs and Lows of Stateful Containers
The Highs and Lows of Stateful ContainersThe Highs and Lows of Stateful Containers
The Highs and Lows of Stateful Containers
C4Media
 
Container Attached Storage with OpenEBS - CNCF Paris Meetup
Container Attached Storage with OpenEBS - CNCF Paris MeetupContainer Attached Storage with OpenEBS - CNCF Paris Meetup
Container Attached Storage with OpenEBS - CNCF Paris Meetup
MayaData Inc
 
Solving k8s persistent workloads using k8s DevOps style
Solving k8s persistent workloads using k8s DevOps styleSolving k8s persistent workloads using k8s DevOps style
Solving k8s persistent workloads using k8s DevOps style
MayaData
 
Scalable and Available, Patterns for Success
Scalable and Available, Patterns for SuccessScalable and Available, Patterns for Success
Scalable and Available, Patterns for Success
Derek Collison
 
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #2: Galera Cluster
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #2: Galera ClusterWebinar Slides: MySQL HA/DR/Geo-Scale - High Noon #2: Galera Cluster
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #2: Galera Cluster
Continuent
 
Data Engineering for Data Scientists
Data Engineering for Data Scientists Data Engineering for Data Scientists
Data Engineering for Data Scientists
jlacefie
 
Select Stars: A DBA's Guide to Azure Cosmos DB (Chicago Suburban SQL Server U...
Select Stars: A DBA's Guide to Azure Cosmos DB (Chicago Suburban SQL Server U...Select Stars: A DBA's Guide to Azure Cosmos DB (Chicago Suburban SQL Server U...
Select Stars: A DBA's Guide to Azure Cosmos DB (Chicago Suburban SQL Server U...
Bob Pusateri
 
OpenStack Cinder, Implementation Today and New Trends for Tomorrow
OpenStack Cinder, Implementation Today and New Trends for TomorrowOpenStack Cinder, Implementation Today and New Trends for Tomorrow
OpenStack Cinder, Implementation Today and New Trends for Tomorrow
Ed Balduf
 
The Good, The Bad, and The Avro (Graham Stirling, Saxo Bank and David Navalho...
The Good, The Bad, and The Avro (Graham Stirling, Saxo Bank and David Navalho...The Good, The Bad, and The Avro (Graham Stirling, Saxo Bank and David Navalho...
The Good, The Bad, and The Avro (Graham Stirling, Saxo Bank and David Navalho...
confluent
 
Design Patterns for Distributed Non-Relational Databases
Design Patterns for Distributed Non-Relational DatabasesDesign Patterns for Distributed Non-Relational Databases
Design Patterns for Distributed Non-Relational Databases
guestdfd1ec
 
Ad

More from ScyllaDB (20)

Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
ScyllaDB
 
Leading a High-Stakes Database Migration
Leading a High-Stakes Database MigrationLeading a High-Stakes Database Migration
Leading a High-Stakes Database Migration
ScyllaDB
 
Achieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
Achieving Extreme Scale with ScyllaDB: Tips & TradeoffsAchieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
Achieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
ScyllaDB
 
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
ScyllaDB
 
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn IsarathamHow Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
ScyllaDB
 
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd ColemanHow Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
ScyllaDB
 
ScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB: 10 Years and Beyond by Dor LaorScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB
 
Reduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
Reduce Your Cloud Spend with ScyllaDB by Tzach LivyatanReduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
Reduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
ScyllaDB
 
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence LiuMigrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
ScyllaDB
 
Vector Search with ScyllaDB by Szymon Wasik
Vector Search with ScyllaDB by Szymon WasikVector Search with ScyllaDB by Szymon Wasik
Vector Search with ScyllaDB by Szymon Wasik
ScyllaDB
 
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
ScyllaDB
 
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
ScyllaDB
 
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
ScyllaDB
 
Object Storage in ScyllaDB by Ran Regev, ScyllaDB
Object Storage in ScyllaDB by Ran Regev, ScyllaDBObject Storage in ScyllaDB by Ran Regev, ScyllaDB
Object Storage in ScyllaDB by Ran Regev, ScyllaDB
ScyllaDB
 
Lessons Learned from Building a Serverless Notifications System by Srushith R...
Lessons Learned from Building a Serverless Notifications System by Srushith R...Lessons Learned from Building a Serverless Notifications System by Srushith R...
Lessons Learned from Building a Serverless Notifications System by Srushith R...
ScyllaDB
 
A Dist Sys Programmer's Journey into AI by Piotr Sarna
A Dist Sys Programmer's Journey into AI by Piotr SarnaA Dist Sys Programmer's Journey into AI by Piotr Sarna
A Dist Sys Programmer's Journey into AI by Piotr Sarna
ScyllaDB
 
High Availability: Lessons Learned by Paul Preuveneers
High Availability: Lessons Learned by Paul PreuveneersHigh Availability: Lessons Learned by Paul Preuveneers
High Availability: Lessons Learned by Paul Preuveneers
ScyllaDB
 
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
ScyllaDB
 
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
ScyllaDB
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
Powering a Billion Dreams: Scaling Meesho’s E-commerce Revolution with Scylla...
ScyllaDB
 
Leading a High-Stakes Database Migration
Leading a High-Stakes Database MigrationLeading a High-Stakes Database Migration
Leading a High-Stakes Database Migration
ScyllaDB
 
Achieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
Achieving Extreme Scale with ScyllaDB: Tips & TradeoffsAchieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
Achieving Extreme Scale with ScyllaDB: Tips & Tradeoffs
ScyllaDB
 
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
Securely Serving Millions of Boot Artifacts a Day by João Pedro Lima & Matt ...
ScyllaDB
 
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn IsarathamHow Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
How Agoda Scaled 50x Throughput with ScyllaDB by Worakarn Isaratham
ScyllaDB
 
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd ColemanHow Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
How Yieldmo Cut Database Costs and Cloud Dependencies Fast by Todd Coleman
ScyllaDB
 
ScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB: 10 Years and Beyond by Dor LaorScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB: 10 Years and Beyond by Dor Laor
ScyllaDB
 
Reduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
Reduce Your Cloud Spend with ScyllaDB by Tzach LivyatanReduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
Reduce Your Cloud Spend with ScyllaDB by Tzach Livyatan
ScyllaDB
 
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence LiuMigrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
Migrating 50TB Data From a Home-Grown Database to ScyllaDB, Fast by Terence Liu
ScyllaDB
 
Vector Search with ScyllaDB by Szymon Wasik
Vector Search with ScyllaDB by Szymon WasikVector Search with ScyllaDB by Szymon Wasik
Vector Search with ScyllaDB by Szymon Wasik
ScyllaDB
 
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
Workload Prioritization: How to Balance Multiple Workloads in a Cluster by Fe...
ScyllaDB
 
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
Two Leading Approaches to Data Virtualization, and Which Scales Better? by Da...
ScyllaDB
 
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
Scaling a Beast: Lessons from 400x Growth in a High-Stakes Financial System b...
ScyllaDB
 
Object Storage in ScyllaDB by Ran Regev, ScyllaDB
Object Storage in ScyllaDB by Ran Regev, ScyllaDBObject Storage in ScyllaDB by Ran Regev, ScyllaDB
Object Storage in ScyllaDB by Ran Regev, ScyllaDB
ScyllaDB
 
Lessons Learned from Building a Serverless Notifications System by Srushith R...
Lessons Learned from Building a Serverless Notifications System by Srushith R...Lessons Learned from Building a Serverless Notifications System by Srushith R...
Lessons Learned from Building a Serverless Notifications System by Srushith R...
ScyllaDB
 
A Dist Sys Programmer's Journey into AI by Piotr Sarna
A Dist Sys Programmer's Journey into AI by Piotr SarnaA Dist Sys Programmer's Journey into AI by Piotr Sarna
A Dist Sys Programmer's Journey into AI by Piotr Sarna
ScyllaDB
 
High Availability: Lessons Learned by Paul Preuveneers
High Availability: Lessons Learned by Paul PreuveneersHigh Availability: Lessons Learned by Paul Preuveneers
High Availability: Lessons Learned by Paul Preuveneers
ScyllaDB
 
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
How Natura Uses ScyllaDB and ScyllaDB Connector to Create a Real-time Data Pi...
ScyllaDB
 
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
Persistence Pipelines in a Processing Graph: Mutable Big Data at Salesforce b...
ScyllaDB
 
Ad

Recently uploaded (20)

Wilcom Embroidery Studio Crack 2025 For Windows
Wilcom Embroidery Studio Crack 2025 For WindowsWilcom Embroidery Studio Crack 2025 For Windows
Wilcom Embroidery Studio Crack 2025 For Windows
Google
 
Digital Twins Software Service in Belfast
Digital Twins Software Service in BelfastDigital Twins Software Service in Belfast
Digital Twins Software Service in Belfast
julia smits
 
Medical Device Cybersecurity Threat & Risk Scoring
Medical Device Cybersecurity Threat & Risk ScoringMedical Device Cybersecurity Threat & Risk Scoring
Medical Device Cybersecurity Threat & Risk Scoring
ICS
 
Sequence Diagrams With Pictures (1).pptx
Sequence Diagrams With Pictures (1).pptxSequence Diagrams With Pictures (1).pptx
Sequence Diagrams With Pictures (1).pptx
aashrithakondapalli8
 
GDS SYSTEM | GLOBAL DISTRIBUTION SYSTEM
GDS SYSTEM | GLOBAL  DISTRIBUTION SYSTEMGDS SYSTEM | GLOBAL  DISTRIBUTION SYSTEM
GDS SYSTEM | GLOBAL DISTRIBUTION SYSTEM
philipnathen82
 
Passive House Canada Conference 2025 Presentation [Final]_v4.ppt
Passive House Canada Conference 2025 Presentation [Final]_v4.pptPassive House Canada Conference 2025 Presentation [Final]_v4.ppt
Passive House Canada Conference 2025 Presentation [Final]_v4.ppt
IES VE
 
From Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
From Vibe Coding to Vibe Testing - Complete PowerPoint PresentationFrom Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
From Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
Shay Ginsbourg
 
Robotic Process Automation (RPA) Software Development Services.pptx
Robotic Process Automation (RPA) Software Development Services.pptxRobotic Process Automation (RPA) Software Development Services.pptx
Robotic Process Automation (RPA) Software Development Services.pptx
julia smits
 
Serato DJ Pro Crack Latest Version 2025??
Serato DJ Pro Crack Latest Version 2025??Serato DJ Pro Crack Latest Version 2025??
Serato DJ Pro Crack Latest Version 2025??
Web Designer
 
What Do Candidates Really Think About AI-Powered Recruitment Tools?
What Do Candidates Really Think About AI-Powered Recruitment Tools?What Do Candidates Really Think About AI-Powered Recruitment Tools?
What Do Candidates Really Think About AI-Powered Recruitment Tools?
HireME
 
Time Estimation: Expert Tips & Proven Project Techniques
Time Estimation: Expert Tips & Proven Project TechniquesTime Estimation: Expert Tips & Proven Project Techniques
Time Estimation: Expert Tips & Proven Project Techniques
Livetecs LLC
 
Exchange Migration Tool- Shoviv Software
Exchange Migration Tool- Shoviv SoftwareExchange Migration Tool- Shoviv Software
Exchange Migration Tool- Shoviv Software
Shoviv Software
 
Tools of the Trade: Linux and SQL - Google Certificate
Tools of the Trade: Linux and SQL - Google CertificateTools of the Trade: Linux and SQL - Google Certificate
Tools of the Trade: Linux and SQL - Google Certificate
VICTOR MAESTRE RAMIREZ
 
How to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryErrorHow to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryError
Tier1 app
 
Troubleshooting JVM Outages – 3 Fortune 500 case studies
Troubleshooting JVM Outages – 3 Fortune 500 case studiesTroubleshooting JVM Outages – 3 Fortune 500 case studies
Troubleshooting JVM Outages – 3 Fortune 500 case studies
Tier1 app
 
[gbgcpp] Let's get comfortable with concepts
[gbgcpp] Let's get comfortable with concepts[gbgcpp] Let's get comfortable with concepts
[gbgcpp] Let's get comfortable with concepts
Dimitrios Platis
 
Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...
Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...
Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...
OnePlan Solutions
 
The-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptx
The-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptxThe-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptx
The-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptx
james brownuae
 
Autodesk Inventor Crack (2025) Latest
Autodesk Inventor    Crack (2025) LatestAutodesk Inventor    Crack (2025) Latest
Autodesk Inventor Crack (2025) Latest
Google
 
Gojek Clone App for Multi-Service Business
Gojek Clone App for Multi-Service BusinessGojek Clone App for Multi-Service Business
Gojek Clone App for Multi-Service Business
XongoLab Technologies LLP
 
Wilcom Embroidery Studio Crack 2025 For Windows
Wilcom Embroidery Studio Crack 2025 For WindowsWilcom Embroidery Studio Crack 2025 For Windows
Wilcom Embroidery Studio Crack 2025 For Windows
Google
 
Digital Twins Software Service in Belfast
Digital Twins Software Service in BelfastDigital Twins Software Service in Belfast
Digital Twins Software Service in Belfast
julia smits
 
Medical Device Cybersecurity Threat & Risk Scoring
Medical Device Cybersecurity Threat & Risk ScoringMedical Device Cybersecurity Threat & Risk Scoring
Medical Device Cybersecurity Threat & Risk Scoring
ICS
 
Sequence Diagrams With Pictures (1).pptx
Sequence Diagrams With Pictures (1).pptxSequence Diagrams With Pictures (1).pptx
Sequence Diagrams With Pictures (1).pptx
aashrithakondapalli8
 
GDS SYSTEM | GLOBAL DISTRIBUTION SYSTEM
GDS SYSTEM | GLOBAL  DISTRIBUTION SYSTEMGDS SYSTEM | GLOBAL  DISTRIBUTION SYSTEM
GDS SYSTEM | GLOBAL DISTRIBUTION SYSTEM
philipnathen82
 
Passive House Canada Conference 2025 Presentation [Final]_v4.ppt
Passive House Canada Conference 2025 Presentation [Final]_v4.pptPassive House Canada Conference 2025 Presentation [Final]_v4.ppt
Passive House Canada Conference 2025 Presentation [Final]_v4.ppt
IES VE
 
From Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
From Vibe Coding to Vibe Testing - Complete PowerPoint PresentationFrom Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
From Vibe Coding to Vibe Testing - Complete PowerPoint Presentation
Shay Ginsbourg
 
Robotic Process Automation (RPA) Software Development Services.pptx
Robotic Process Automation (RPA) Software Development Services.pptxRobotic Process Automation (RPA) Software Development Services.pptx
Robotic Process Automation (RPA) Software Development Services.pptx
julia smits
 
Serato DJ Pro Crack Latest Version 2025??
Serato DJ Pro Crack Latest Version 2025??Serato DJ Pro Crack Latest Version 2025??
Serato DJ Pro Crack Latest Version 2025??
Web Designer
 
What Do Candidates Really Think About AI-Powered Recruitment Tools?
What Do Candidates Really Think About AI-Powered Recruitment Tools?What Do Candidates Really Think About AI-Powered Recruitment Tools?
What Do Candidates Really Think About AI-Powered Recruitment Tools?
HireME
 
Time Estimation: Expert Tips & Proven Project Techniques
Time Estimation: Expert Tips & Proven Project TechniquesTime Estimation: Expert Tips & Proven Project Techniques
Time Estimation: Expert Tips & Proven Project Techniques
Livetecs LLC
 
Exchange Migration Tool- Shoviv Software
Exchange Migration Tool- Shoviv SoftwareExchange Migration Tool- Shoviv Software
Exchange Migration Tool- Shoviv Software
Shoviv Software
 
Tools of the Trade: Linux and SQL - Google Certificate
Tools of the Trade: Linux and SQL - Google CertificateTools of the Trade: Linux and SQL - Google Certificate
Tools of the Trade: Linux and SQL - Google Certificate
VICTOR MAESTRE RAMIREZ
 
How to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryErrorHow to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryError
Tier1 app
 
Troubleshooting JVM Outages – 3 Fortune 500 case studies
Troubleshooting JVM Outages – 3 Fortune 500 case studiesTroubleshooting JVM Outages – 3 Fortune 500 case studies
Troubleshooting JVM Outages – 3 Fortune 500 case studies
Tier1 app
 
[gbgcpp] Let's get comfortable with concepts
[gbgcpp] Let's get comfortable with concepts[gbgcpp] Let's get comfortable with concepts
[gbgcpp] Let's get comfortable with concepts
Dimitrios Platis
 
Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...
Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...
Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...
OnePlan Solutions
 
The-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptx
The-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptxThe-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptx
The-Future-is-Hybrid-Exploring-Azure’s-Role-in-Multi-Cloud-Strategies.pptx
james brownuae
 
Autodesk Inventor Crack (2025) Latest
Autodesk Inventor    Crack (2025) LatestAutodesk Inventor    Crack (2025) Latest
Autodesk Inventor Crack (2025) Latest
Google
 

Scylla Summit 2018: Consensus in Eventually Consistent Databases

  翻译: