SlideShare a Scribd company logo
SchemEX
Creating the Yellow Pages of the LOD Cloud

Mathias Konrath, Thomas Gottron, Ansgar Scherp
Scenario
• People who are politicians and actors




• Who else?
• Where do they live?
• Whom do they know?
SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   2 of 12
Problem
• Execute those queries on the LOD cloud
• No single federated query interface provided




       “politicians
       and actors”

SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   3 of 12
Principle Solution
• Suitable index structure for looking up sources




       “politicians
       and actors”

SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   4 of 12
The Naive Approach
1.     Download the entire LOD cloud
2.     Put it into a (really) large triple store
3.     Process the data and extract schema
4.     Provide lookup

- Big machinery
- Late in processing the data
- High effort to scale with LOD cloud



SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   5 of 12
Yes, we can …



SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   6 of 12
The SchemEX Approach
• Stream-based schema extraction
• While crawling the data


                                          FIFO
LOD-Crawler                                                Instance-
 RDF-Dump                                                    Cache
                                                                        RDF
 Triple Store                                                          RDBMS
                              NxParser

    Nquad-                                                 Schema-
                                Parser                                 Schema
    Stream                                                 Extractor

SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   7 of 12
Efficient Instance Cache
• Observe a quadruple stream from LD spider




• Ring queue, backed up by a hash map
• Organizes triples with same subject URI
• Dismiss oldest, when cache full (FIFO)
→ Runtime complexity O(1)
SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   8 of 12
Building the Schema and Index
                                                                              RDF
       c1               c2               c3                …         ck
                                                                             classes
                                         consistsOf
                                                                              Type
        TC1                     TC2                        …         TCm     clusters
hasEQ
Class                 p1                            p2
       EQC1                   EQC2                         … EQCn          Equivalence
                                                                             classes
                                           hasDataSource

                                                           …                 Data
  DS1 DS2 DS3 DS4 DS5                                            DSx        sources
SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   9 of 12
Computing SchemEX: TimBL Data Set
• Analysis of a smaller data set
• 11 M triples, TimBL’s FOAF profile
• LDspider with ~ 2k triples / sec


•   Different cache sizes: 100, 1k, 10k, 50k, 100k
•   Compared SchemEX with reference schema
•   Index queries on all Types, TCs, EQCs
•   Good precision/recall ratio at 50k+

SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   10 of 12
Computing SchemEX: Full BTC 2011 Data




Cache size: 50 k
SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   11 of 12
Conclusions: SchemEX
• Stream-based approach to schema extraction
• Scalable to arbitrary amount of Linked Data
• Applicable on commodity hardware
  (4GB RAM, standard single CPU)




• Lookup-index to find relevant data sources
• Support federated queries on the LOD cloud
SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   12 of 12
BACKUP




SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   13 of 12
SchemEX Computation: Window Sizes
                                      Runtime increases hardly with
                                          greater window sizes




 Crawled TimBL dataset                                     Memory consumption scales
  (11M triples)                                                with window size


SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   14 of 12
SchemEX Quality: Precision




SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   15 of 12
SchemEX Quality: Recall




SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   16 of 12
Example Data Graph




SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   17 of 12
Output Vocabulary: voiD




SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp   18 of 12
SchemEX Extraction: Progress Plot

                  Type-cluster
                  Equivalence classes
 Count




                                 ##processed instances
                                        processed 12           instances
SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 19 of
Ad

More Related Content

What's hot (20)

Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
MOVING Project
 
Parikshit Ram – Senior Machine Learning Scientist, Skytree at MLconf ATL
Parikshit Ram – Senior Machine Learning Scientist, Skytree at MLconf ATLParikshit Ram – Senior Machine Learning Scientist, Skytree at MLconf ATL
Parikshit Ram – Senior Machine Learning Scientist, Skytree at MLconf ATL
MLconf
 
Mining Big Data Streams with APACHE SAMOA
Mining Big Data Streams with APACHE SAMOAMining Big Data Streams with APACHE SAMOA
Mining Big Data Streams with APACHE SAMOA
Albert Bifet
 
Strata NYC 2015: Sketching Big Data with Spark: randomized algorithms for lar...
Strata NYC 2015: Sketching Big Data with Spark: randomized algorithms for lar...Strata NYC 2015: Sketching Big Data with Spark: randomized algorithms for lar...
Strata NYC 2015: Sketching Big Data with Spark: randomized algorithms for lar...
Databricks
 
5.1 mining data streams
5.1 mining data streams5.1 mining data streams
5.1 mining data streams
Krish_ver2
 
MOA for the IoT at ACML 2016
MOA for the IoT at ACML 2016 MOA for the IoT at ACML 2016
MOA for the IoT at ACML 2016
Albert Bifet
 
Sebastian Schelter – Distributed Machine Learing with the Samsara DSL
Sebastian Schelter – Distributed Machine Learing with the Samsara DSLSebastian Schelter – Distributed Machine Learing with the Samsara DSL
Sebastian Schelter – Distributed Machine Learing with the Samsara DSL
Flink Forward
 
R + Storm Moneyball - Realtime Advanced Statistics - Hadoop Summit - San Jose
R + Storm Moneyball - Realtime Advanced Statistics - Hadoop Summit - San JoseR + Storm Moneyball - Realtime Advanced Statistics - Hadoop Summit - San Jose
R + Storm Moneyball - Realtime Advanced Statistics - Hadoop Summit - San Jose
Allen Day, PhD
 
Artificial intelligence and data stream mining
Artificial intelligence and data stream miningArtificial intelligence and data stream mining
Artificial intelligence and data stream mining
Albert Bifet
 
Mining Big Data in Real Time
Mining Big Data in Real TimeMining Big Data in Real Time
Mining Big Data in Real Time
Albert Bifet
 
Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...
Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...
Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...
Ian Foster
 
Distributed GLM with H2O - Atlanta Meetup
Distributed GLM with H2O - Atlanta MeetupDistributed GLM with H2O - Atlanta Meetup
Distributed GLM with H2O - Atlanta Meetup
Sri Ambati
 
Mining high speed data streams: Hoeffding and VFDT
Mining high speed data streams: Hoeffding and VFDTMining high speed data streams: Hoeffding and VFDT
Mining high speed data streams: Hoeffding and VFDT
Davide Gallitelli
 
Introduction to Data streaming - 05/12/2014
Introduction to Data streaming - 05/12/2014Introduction to Data streaming - 05/12/2014
Introduction to Data streaming - 05/12/2014
Raja Chiky
 
Magellan-Spark as a Geospatial Analytics Engine by Ram Sriharsha
Magellan-Spark as a Geospatial Analytics Engine by Ram SriharshaMagellan-Spark as a Geospatial Analytics Engine by Ram Sriharsha
Magellan-Spark as a Geospatial Analytics Engine by Ram Sriharsha
Spark Summit
 
Astronomical Data Processing on the LSST Scale with Apache Spark
Astronomical Data Processing on the LSST Scale with Apache SparkAstronomical Data Processing on the LSST Scale with Apache Spark
Astronomical Data Processing on the LSST Scale with Apache Spark
Databricks
 
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
Spark Summit
 
End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017
End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017
End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017
StampedeCon
 
Working with HDF and netCDF Data in ArcGIS: Tools and Case Studies
Working with HDF and netCDF Data in ArcGIS: Tools and Case StudiesWorking with HDF and netCDF Data in ArcGIS: Tools and Case Studies
Working with HDF and netCDF Data in ArcGIS: Tools and Case Studies
The HDF-EOS Tools and Information Center
 
Graph databases: Tinkerpop and Titan DB
Graph databases: Tinkerpop and Titan DBGraph databases: Tinkerpop and Titan DB
Graph databases: Tinkerpop and Titan DB
Mohamed Taher Alrefaie
 
Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
MOVING Project
 
Parikshit Ram – Senior Machine Learning Scientist, Skytree at MLconf ATL
Parikshit Ram – Senior Machine Learning Scientist, Skytree at MLconf ATLParikshit Ram – Senior Machine Learning Scientist, Skytree at MLconf ATL
Parikshit Ram – Senior Machine Learning Scientist, Skytree at MLconf ATL
MLconf
 
Mining Big Data Streams with APACHE SAMOA
Mining Big Data Streams with APACHE SAMOAMining Big Data Streams with APACHE SAMOA
Mining Big Data Streams with APACHE SAMOA
Albert Bifet
 
Strata NYC 2015: Sketching Big Data with Spark: randomized algorithms for lar...
Strata NYC 2015: Sketching Big Data with Spark: randomized algorithms for lar...Strata NYC 2015: Sketching Big Data with Spark: randomized algorithms for lar...
Strata NYC 2015: Sketching Big Data with Spark: randomized algorithms for lar...
Databricks
 
5.1 mining data streams
5.1 mining data streams5.1 mining data streams
5.1 mining data streams
Krish_ver2
 
MOA for the IoT at ACML 2016
MOA for the IoT at ACML 2016 MOA for the IoT at ACML 2016
MOA for the IoT at ACML 2016
Albert Bifet
 
Sebastian Schelter – Distributed Machine Learing with the Samsara DSL
Sebastian Schelter – Distributed Machine Learing with the Samsara DSLSebastian Schelter – Distributed Machine Learing with the Samsara DSL
Sebastian Schelter – Distributed Machine Learing with the Samsara DSL
Flink Forward
 
R + Storm Moneyball - Realtime Advanced Statistics - Hadoop Summit - San Jose
R + Storm Moneyball - Realtime Advanced Statistics - Hadoop Summit - San JoseR + Storm Moneyball - Realtime Advanced Statistics - Hadoop Summit - San Jose
R + Storm Moneyball - Realtime Advanced Statistics - Hadoop Summit - San Jose
Allen Day, PhD
 
Artificial intelligence and data stream mining
Artificial intelligence and data stream miningArtificial intelligence and data stream mining
Artificial intelligence and data stream mining
Albert Bifet
 
Mining Big Data in Real Time
Mining Big Data in Real TimeMining Big Data in Real Time
Mining Big Data in Real Time
Albert Bifet
 
Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...
Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...
Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...
Ian Foster
 
Distributed GLM with H2O - Atlanta Meetup
Distributed GLM with H2O - Atlanta MeetupDistributed GLM with H2O - Atlanta Meetup
Distributed GLM with H2O - Atlanta Meetup
Sri Ambati
 
Mining high speed data streams: Hoeffding and VFDT
Mining high speed data streams: Hoeffding and VFDTMining high speed data streams: Hoeffding and VFDT
Mining high speed data streams: Hoeffding and VFDT
Davide Gallitelli
 
Introduction to Data streaming - 05/12/2014
Introduction to Data streaming - 05/12/2014Introduction to Data streaming - 05/12/2014
Introduction to Data streaming - 05/12/2014
Raja Chiky
 
Magellan-Spark as a Geospatial Analytics Engine by Ram Sriharsha
Magellan-Spark as a Geospatial Analytics Engine by Ram SriharshaMagellan-Spark as a Geospatial Analytics Engine by Ram Sriharsha
Magellan-Spark as a Geospatial Analytics Engine by Ram Sriharsha
Spark Summit
 
Astronomical Data Processing on the LSST Scale with Apache Spark
Astronomical Data Processing on the LSST Scale with Apache SparkAstronomical Data Processing on the LSST Scale with Apache Spark
Astronomical Data Processing on the LSST Scale with Apache Spark
Databricks
 
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
Spark Summit
 
End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017
End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017
End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017
StampedeCon
 
Graph databases: Tinkerpop and Titan DB
Graph databases: Tinkerpop and Titan DBGraph databases: Tinkerpop and Titan DB
Graph databases: Tinkerpop and Titan DB
Mohamed Taher Alrefaie
 

Viewers also liked (20)

 Challenges in Managing Online Business Communities
 Challenges in Managing Online Business Communities Challenges in Managing Online Business Communities
 Challenges in Managing Online Business Communities
Thomas Gottron
 
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
Thomas Gottron
 
SchemEX -- Building an Index for Linked Open Data
SchemEX -- Building an Index for Linked Open DataSchemEX -- Building an Index for Linked Open Data
SchemEX -- Building an Index for Linked Open Data
Ansgar Scherp
 
A Model of Events for Integrating Event-based Information in Complex Socio-te...
A Model of Events for Integrating Event-based Information in Complex Socio-te...A Model of Events for Integrating Event-based Information in Complex Socio-te...
A Model of Events for Integrating Event-based Information in Complex Socio-te...
Ansgar Scherp
 
Smart photo selection: interpret gaze as personal interest
Smart photo selection: interpret gaze as personal interestSmart photo selection: interpret gaze as personal interest
Smart photo selection: interpret gaze as personal interest
Ansgar Scherp
 
Linked open data - how to juggle with more than a billion triples
Linked open data - how to juggle with more than a billion triplesLinked open data - how to juggle with more than a billion triples
Linked open data - how to juggle with more than a billion triples
Ansgar Scherp
 
Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...
Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...
Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...
Thomas Gottron
 
Making Use of the Linked Data Cloud: The Role of Index Structures
Making Use of the Linked Data Cloud: The Role of Index StructuresMaking Use of the Linked Data Cloud: The Role of Index Structures
Making Use of the Linked Data Cloud: The Role of Index Structures
Thomas Gottron
 
Challenging Retrieval Scenarios: Social Media and Linked Open Data
Challenging Retrieval Scenarios: Social Media and Linked Open DataChallenging Retrieval Scenarios: Social Media and Linked Open Data
Challenging Retrieval Scenarios: Social Media and Linked Open Data
Thomas Gottron
 
Perplexity of Index Models over Evolving Linked Data
Perplexity of Index Models over Evolving Linked Data Perplexity of Index Models over Evolving Linked Data
Perplexity of Index Models over Evolving Linked Data
Thomas Gottron
 
Of Sampling and Smoothing: Approximating Distributions over Linked Open Data
Of Sampling and Smoothing: Approximating Distributions over Linked Open DataOf Sampling and Smoothing: Approximating Distributions over Linked Open Data
Of Sampling and Smoothing: Approximating Distributions over Linked Open Data
Thomas Gottron
 
Can you see it? Annotating Image Regions based on Users' Gaze Information
Can you see it? Annotating Image Regions based on Users' Gaze InformationCan you see it? Annotating Image Regions based on Users' Gaze Information
Can you see it? Annotating Image Regions based on Users' Gaze Information
Ansgar Scherp
 
Focused Exploration of Geospatial Context on Linked Open Data
Focused Exploration of Geospatial Context on Linked Open DataFocused Exploration of Geospatial Context on Linked Open Data
Focused Exploration of Geospatial Context on Linked Open Data
Thomas Gottron
 
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
Thomas Gottron
 
Linked Open Data (Entwurfsprinzipien und Muster für vernetzte Daten)
Linked Open Data (Entwurfsprinzipien und Muster für vernetzte Daten)Linked Open Data (Entwurfsprinzipien und Muster für vernetzte Daten)
Linked Open Data (Entwurfsprinzipien und Muster für vernetzte Daten)
Ansgar Scherp
 
Leveraging the Web of Data: Managing, Analysing and Making Use of Linked Open...
Leveraging the Web of Data: Managing, Analysing and Making Use of Linked Open...Leveraging the Web of Data: Managing, Analysing and Making Use of Linked Open...
Leveraging the Web of Data: Managing, Analysing and Making Use of Linked Open...
Thomas Gottron
 
Events in Multimedia - Theory, Model, Application
Events in Multimedia - Theory, Model, ApplicationEvents in Multimedia - Theory, Model, Application
Events in Multimedia - Theory, Model, Application
Ansgar Scherp
 
Identifying Objects in Images from Analyzing the User‘s Gaze Movements for Pr...
Identifying Objects in Images from Analyzing the User‘s Gaze Movements for Pr...Identifying Objects in Images from Analyzing the User‘s Gaze Movements for Pr...
Identifying Objects in Images from Analyzing the User‘s Gaze Movements for Pr...
Ansgar Scherp
 
A Framework for Iterative Signing of Graph Data on the Web
A Framework for Iterative Signing of Graph Data on the WebA Framework for Iterative Signing of Graph Data on the Web
A Framework for Iterative Signing of Graph Data on the Web
Ansgar Scherp
 
Establishing a Strategy for Data Quality
Establishing a Strategy for Data QualityEstablishing a Strategy for Data Quality
Establishing a Strategy for Data Quality
Database Answers Ltd.
 
 Challenges in Managing Online Business Communities
 Challenges in Managing Online Business Communities Challenges in Managing Online Business Communities
 Challenges in Managing Online Business Communities
Thomas Gottron
 
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
Thomas Gottron
 
SchemEX -- Building an Index for Linked Open Data
SchemEX -- Building an Index for Linked Open DataSchemEX -- Building an Index for Linked Open Data
SchemEX -- Building an Index for Linked Open Data
Ansgar Scherp
 
A Model of Events for Integrating Event-based Information in Complex Socio-te...
A Model of Events for Integrating Event-based Information in Complex Socio-te...A Model of Events for Integrating Event-based Information in Complex Socio-te...
A Model of Events for Integrating Event-based Information in Complex Socio-te...
Ansgar Scherp
 
Smart photo selection: interpret gaze as personal interest
Smart photo selection: interpret gaze as personal interestSmart photo selection: interpret gaze as personal interest
Smart photo selection: interpret gaze as personal interest
Ansgar Scherp
 
Linked open data - how to juggle with more than a billion triples
Linked open data - how to juggle with more than a billion triplesLinked open data - how to juggle with more than a billion triples
Linked open data - how to juggle with more than a billion triples
Ansgar Scherp
 
Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...
Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...
Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...
Thomas Gottron
 
Making Use of the Linked Data Cloud: The Role of Index Structures
Making Use of the Linked Data Cloud: The Role of Index StructuresMaking Use of the Linked Data Cloud: The Role of Index Structures
Making Use of the Linked Data Cloud: The Role of Index Structures
Thomas Gottron
 
Challenging Retrieval Scenarios: Social Media and Linked Open Data
Challenging Retrieval Scenarios: Social Media and Linked Open DataChallenging Retrieval Scenarios: Social Media and Linked Open Data
Challenging Retrieval Scenarios: Social Media and Linked Open Data
Thomas Gottron
 
Perplexity of Index Models over Evolving Linked Data
Perplexity of Index Models over Evolving Linked Data Perplexity of Index Models over Evolving Linked Data
Perplexity of Index Models over Evolving Linked Data
Thomas Gottron
 
Of Sampling and Smoothing: Approximating Distributions over Linked Open Data
Of Sampling and Smoothing: Approximating Distributions over Linked Open DataOf Sampling and Smoothing: Approximating Distributions over Linked Open Data
Of Sampling and Smoothing: Approximating Distributions over Linked Open Data
Thomas Gottron
 
Can you see it? Annotating Image Regions based on Users' Gaze Information
Can you see it? Annotating Image Regions based on Users' Gaze InformationCan you see it? Annotating Image Regions based on Users' Gaze Information
Can you see it? Annotating Image Regions based on Users' Gaze Information
Ansgar Scherp
 
Focused Exploration of Geospatial Context on Linked Open Data
Focused Exploration of Geospatial Context on Linked Open DataFocused Exploration of Geospatial Context on Linked Open Data
Focused Exploration of Geospatial Context on Linked Open Data
Thomas Gottron
 
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
Thomas Gottron
 
Linked Open Data (Entwurfsprinzipien und Muster für vernetzte Daten)
Linked Open Data (Entwurfsprinzipien und Muster für vernetzte Daten)Linked Open Data (Entwurfsprinzipien und Muster für vernetzte Daten)
Linked Open Data (Entwurfsprinzipien und Muster für vernetzte Daten)
Ansgar Scherp
 
Leveraging the Web of Data: Managing, Analysing and Making Use of Linked Open...
Leveraging the Web of Data: Managing, Analysing and Making Use of Linked Open...Leveraging the Web of Data: Managing, Analysing and Making Use of Linked Open...
Leveraging the Web of Data: Managing, Analysing and Making Use of Linked Open...
Thomas Gottron
 
Events in Multimedia - Theory, Model, Application
Events in Multimedia - Theory, Model, ApplicationEvents in Multimedia - Theory, Model, Application
Events in Multimedia - Theory, Model, Application
Ansgar Scherp
 
Identifying Objects in Images from Analyzing the User‘s Gaze Movements for Pr...
Identifying Objects in Images from Analyzing the User‘s Gaze Movements for Pr...Identifying Objects in Images from Analyzing the User‘s Gaze Movements for Pr...
Identifying Objects in Images from Analyzing the User‘s Gaze Movements for Pr...
Ansgar Scherp
 
A Framework for Iterative Signing of Graph Data on the Web
A Framework for Iterative Signing of Graph Data on the WebA Framework for Iterative Signing of Graph Data on the Web
A Framework for Iterative Signing of Graph Data on the Web
Ansgar Scherp
 
Establishing a Strategy for Data Quality
Establishing a Strategy for Data QualityEstablishing a Strategy for Data Quality
Establishing a Strategy for Data Quality
Database Answers Ltd.
 
Ad

Similar to SchemEX - Creating the Yellow Pages for the Linked Open Data Cloud (20)

Polyraptor
PolyraptorPolyraptor
Polyraptor
MohammedAlasmar2
 
OSDC 2016 - Chronix - A fast and efficient time series storage based on Apach...
OSDC 2016 - Chronix - A fast and efficient time series storage based on Apach...OSDC 2016 - Chronix - A fast and efficient time series storage based on Apach...
OSDC 2016 - Chronix - A fast and efficient time series storage based on Apach...
NETWAYS
 
A Fast and Efficient Time Series Storage Based on Apache Solr
A Fast and Efficient Time Series Storage Based on Apache SolrA Fast and Efficient Time Series Storage Based on Apache Solr
A Fast and Efficient Time Series Storage Based on Apache Solr
QAware GmbH
 
Chronix: A fast and efficient time series storage based on Apache Solr
Chronix: A fast and efficient time series storage based on Apache SolrChronix: A fast and efficient time series storage based on Apache Solr
Chronix: A fast and efficient time series storage based on Apache Solr
Florian Lautenschlager
 
FEC & File Multicast
FEC & File MulticastFEC & File Multicast
FEC & File Multicast
Yoss Cohen
 
On the need for a W3C community group on RDF Stream Processing
On the need for a W3C community group on RDF Stream ProcessingOn the need for a W3C community group on RDF Stream Processing
On the need for a W3C community group on RDF Stream Processing
PlanetData Network of Excellence
 
OrdRing 2013 keynote - On the need for a W3C community group on RDF Stream Pr...
OrdRing 2013 keynote - On the need for a W3C community group on RDF Stream Pr...OrdRing 2013 keynote - On the need for a W3C community group on RDF Stream Pr...
OrdRing 2013 keynote - On the need for a W3C community group on RDF Stream Pr...
Oscar Corcho
 
Time Series Processing with Apache Spark
Time Series Processing with Apache SparkTime Series Processing with Apache Spark
Time Series Processing with Apache Spark
QAware GmbH
 
Time Series Processing with Apache Spark
Time Series Processing with Apache SparkTime Series Processing with Apache Spark
Time Series Processing with Apache Spark
Josef Adersberger
 
Новая архитектура шардинга MongoDB, Leif Walsh (Tokutek)
Новая архитектура шардинга MongoDB, Leif Walsh (Tokutek)Новая архитектура шардинга MongoDB, Leif Walsh (Tokutek)
Новая архитектура шардинга MongoDB, Leif Walsh (Tokutek)
Ontico
 
A New MongoDB Sharding Architecture for Higher Availability and Better Resour...
A New MongoDB Sharding Architecture for Higher Availability and Better Resour...A New MongoDB Sharding Architecture for Higher Availability and Better Resour...
A New MongoDB Sharding Architecture for Higher Availability and Better Resour...
leifwalsh
 
The new time series kid on the block
The new time series kid on the blockThe new time series kid on the block
The new time series kid on the block
Florian Lautenschlager
 
Xml::parent - Yet another way to store XML files
Xml::parent - Yet another way to store XML files Xml::parent - Yet another way to store XML files
Xml::parent - Yet another way to store XML files
Marco Masetti
 
Chronix Time Series Database - The New Time Series Kid on the Block
Chronix Time Series Database - The New Time Series Kid on the BlockChronix Time Series Database - The New Time Series Kid on the Block
Chronix Time Series Database - The New Time Series Kid on the Block
QAware GmbH
 
Apache cassandra
Apache cassandraApache cassandra
Apache cassandra
Adnan Siddiqi
 
Low Level CPU Performance Profiling Examples
Low Level CPU Performance Profiling ExamplesLow Level CPU Performance Profiling Examples
Low Level CPU Performance Profiling Examples
Tanel Poder
 
Spark Summit EU talk by Qifan Pu
Spark Summit EU talk by Qifan PuSpark Summit EU talk by Qifan Pu
Spark Summit EU talk by Qifan Pu
Spark Summit
 
Xml processing-by-asfak
Xml processing-by-asfakXml processing-by-asfak
Xml processing-by-asfak
Asfak Mahamud
 
7_mem_cache.ppt
7_mem_cache.ppt7_mem_cache.ppt
7_mem_cache.ppt
RohitPaul71
 
EKON28 - Winning the 1BRC Challenge In Pascal
EKON28 - Winning the 1BRC Challenge In PascalEKON28 - Winning the 1BRC Challenge In Pascal
EKON28 - Winning the 1BRC Challenge In Pascal
Arnaud Bouchez
 
OSDC 2016 - Chronix - A fast and efficient time series storage based on Apach...
OSDC 2016 - Chronix - A fast and efficient time series storage based on Apach...OSDC 2016 - Chronix - A fast and efficient time series storage based on Apach...
OSDC 2016 - Chronix - A fast and efficient time series storage based on Apach...
NETWAYS
 
A Fast and Efficient Time Series Storage Based on Apache Solr
A Fast and Efficient Time Series Storage Based on Apache SolrA Fast and Efficient Time Series Storage Based on Apache Solr
A Fast and Efficient Time Series Storage Based on Apache Solr
QAware GmbH
 
Chronix: A fast and efficient time series storage based on Apache Solr
Chronix: A fast and efficient time series storage based on Apache SolrChronix: A fast and efficient time series storage based on Apache Solr
Chronix: A fast and efficient time series storage based on Apache Solr
Florian Lautenschlager
 
FEC & File Multicast
FEC & File MulticastFEC & File Multicast
FEC & File Multicast
Yoss Cohen
 
On the need for a W3C community group on RDF Stream Processing
On the need for a W3C community group on RDF Stream ProcessingOn the need for a W3C community group on RDF Stream Processing
On the need for a W3C community group on RDF Stream Processing
PlanetData Network of Excellence
 
OrdRing 2013 keynote - On the need for a W3C community group on RDF Stream Pr...
OrdRing 2013 keynote - On the need for a W3C community group on RDF Stream Pr...OrdRing 2013 keynote - On the need for a W3C community group on RDF Stream Pr...
OrdRing 2013 keynote - On the need for a W3C community group on RDF Stream Pr...
Oscar Corcho
 
Time Series Processing with Apache Spark
Time Series Processing with Apache SparkTime Series Processing with Apache Spark
Time Series Processing with Apache Spark
QAware GmbH
 
Time Series Processing with Apache Spark
Time Series Processing with Apache SparkTime Series Processing with Apache Spark
Time Series Processing with Apache Spark
Josef Adersberger
 
Новая архитектура шардинга MongoDB, Leif Walsh (Tokutek)
Новая архитектура шардинга MongoDB, Leif Walsh (Tokutek)Новая архитектура шардинга MongoDB, Leif Walsh (Tokutek)
Новая архитектура шардинга MongoDB, Leif Walsh (Tokutek)
Ontico
 
A New MongoDB Sharding Architecture for Higher Availability and Better Resour...
A New MongoDB Sharding Architecture for Higher Availability and Better Resour...A New MongoDB Sharding Architecture for Higher Availability and Better Resour...
A New MongoDB Sharding Architecture for Higher Availability and Better Resour...
leifwalsh
 
Xml::parent - Yet another way to store XML files
Xml::parent - Yet another way to store XML files Xml::parent - Yet another way to store XML files
Xml::parent - Yet another way to store XML files
Marco Masetti
 
Chronix Time Series Database - The New Time Series Kid on the Block
Chronix Time Series Database - The New Time Series Kid on the BlockChronix Time Series Database - The New Time Series Kid on the Block
Chronix Time Series Database - The New Time Series Kid on the Block
QAware GmbH
 
Low Level CPU Performance Profiling Examples
Low Level CPU Performance Profiling ExamplesLow Level CPU Performance Profiling Examples
Low Level CPU Performance Profiling Examples
Tanel Poder
 
Spark Summit EU talk by Qifan Pu
Spark Summit EU talk by Qifan PuSpark Summit EU talk by Qifan Pu
Spark Summit EU talk by Qifan Pu
Spark Summit
 
Xml processing-by-asfak
Xml processing-by-asfakXml processing-by-asfak
Xml processing-by-asfak
Asfak Mahamud
 
EKON28 - Winning the 1BRC Challenge In Pascal
EKON28 - Winning the 1BRC Challenge In PascalEKON28 - Winning the 1BRC Challenge In Pascal
EKON28 - Winning the 1BRC Challenge In Pascal
Arnaud Bouchez
 
Ad

More from Ansgar Scherp (7)

Analysis of GraphSum's Attention Weights to Improve the Explainability of Mul...
Analysis of GraphSum's Attention Weights to Improve the Explainability of Mul...Analysis of GraphSum's Attention Weights to Improve the Explainability of Mul...
Analysis of GraphSum's Attention Weights to Improve the Explainability of Mul...
Ansgar Scherp
 
STEREO: A Pipeline for Extracting Experiment Statistics, Conditions, and Topi...
STEREO: A Pipeline for Extracting Experiment Statistics, Conditions, and Topi...STEREO: A Pipeline for Extracting Experiment Statistics, Conditions, and Topi...
STEREO: A Pipeline for Extracting Experiment Statistics, Conditions, and Topi...
Ansgar Scherp
 
Text Localization in Scientific Figures using Fully Convolutional Neural Netw...
Text Localization in Scientific Figures using Fully Convolutional Neural Netw...Text Localization in Scientific Figures using Fully Convolutional Neural Netw...
Text Localization in Scientific Figures using Fully Convolutional Neural Netw...
Ansgar Scherp
 
A Comparison of Approaches for Automated Text Extraction from Scholarly Figures
A Comparison of Approaches for Automated Text Extraction from Scholarly FiguresA Comparison of Approaches for Automated Text Extraction from Scholarly Figures
A Comparison of Approaches for Automated Text Extraction from Scholarly Figures
Ansgar Scherp
 
About Multimedia Presentation Generation and Multimedia Metadata: From Synthe...
About Multimedia Presentation Generation and Multimedia Metadata: From Synthe...About Multimedia Presentation Generation and Multimedia Metadata: From Synthe...
About Multimedia Presentation Generation and Multimedia Metadata: From Synthe...
Ansgar Scherp
 
SchemEX -- Building an Index for Linked Open Data
SchemEX -- Building an Index for Linked Open DataSchemEX -- Building an Index for Linked Open Data
SchemEX -- Building an Index for Linked Open Data
Ansgar Scherp
 
strukt - A Pattern System for Integrating Individual and Organizational Knowl...
strukt - A Pattern System for Integrating Individual and Organizational Knowl...strukt - A Pattern System for Integrating Individual and Organizational Knowl...
strukt - A Pattern System for Integrating Individual and Organizational Knowl...
Ansgar Scherp
 
Analysis of GraphSum's Attention Weights to Improve the Explainability of Mul...
Analysis of GraphSum's Attention Weights to Improve the Explainability of Mul...Analysis of GraphSum's Attention Weights to Improve the Explainability of Mul...
Analysis of GraphSum's Attention Weights to Improve the Explainability of Mul...
Ansgar Scherp
 
STEREO: A Pipeline for Extracting Experiment Statistics, Conditions, and Topi...
STEREO: A Pipeline for Extracting Experiment Statistics, Conditions, and Topi...STEREO: A Pipeline for Extracting Experiment Statistics, Conditions, and Topi...
STEREO: A Pipeline for Extracting Experiment Statistics, Conditions, and Topi...
Ansgar Scherp
 
Text Localization in Scientific Figures using Fully Convolutional Neural Netw...
Text Localization in Scientific Figures using Fully Convolutional Neural Netw...Text Localization in Scientific Figures using Fully Convolutional Neural Netw...
Text Localization in Scientific Figures using Fully Convolutional Neural Netw...
Ansgar Scherp
 
A Comparison of Approaches for Automated Text Extraction from Scholarly Figures
A Comparison of Approaches for Automated Text Extraction from Scholarly FiguresA Comparison of Approaches for Automated Text Extraction from Scholarly Figures
A Comparison of Approaches for Automated Text Extraction from Scholarly Figures
Ansgar Scherp
 
About Multimedia Presentation Generation and Multimedia Metadata: From Synthe...
About Multimedia Presentation Generation and Multimedia Metadata: From Synthe...About Multimedia Presentation Generation and Multimedia Metadata: From Synthe...
About Multimedia Presentation Generation and Multimedia Metadata: From Synthe...
Ansgar Scherp
 
SchemEX -- Building an Index for Linked Open Data
SchemEX -- Building an Index for Linked Open DataSchemEX -- Building an Index for Linked Open Data
SchemEX -- Building an Index for Linked Open Data
Ansgar Scherp
 
strukt - A Pattern System for Integrating Individual and Organizational Knowl...
strukt - A Pattern System for Integrating Individual and Organizational Knowl...strukt - A Pattern System for Integrating Individual and Organizational Knowl...
strukt - A Pattern System for Integrating Individual and Organizational Knowl...
Ansgar Scherp
 

Recently uploaded (20)

Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
Top-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptxTop-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptx
BR Softech
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
Agentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community MeetupAgentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community Meetup
Manoj Batra (1600 + Connections)
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
Lorenzo Miniero
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
Top-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptxTop-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptx
BR Softech
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
Lorenzo Miniero
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 

SchemEX - Creating the Yellow Pages for the Linked Open Data Cloud

  • 1. SchemEX Creating the Yellow Pages of the LOD Cloud Mathias Konrath, Thomas Gottron, Ansgar Scherp
  • 2. Scenario • People who are politicians and actors • Who else? • Where do they live? • Whom do they know? SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 2 of 12
  • 3. Problem • Execute those queries on the LOD cloud • No single federated query interface provided “politicians and actors” SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 3 of 12
  • 4. Principle Solution • Suitable index structure for looking up sources “politicians and actors” SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 4 of 12
  • 5. The Naive Approach 1. Download the entire LOD cloud 2. Put it into a (really) large triple store 3. Process the data and extract schema 4. Provide lookup - Big machinery - Late in processing the data - High effort to scale with LOD cloud SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 5 of 12
  • 6. Yes, we can … SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 6 of 12
  • 7. The SchemEX Approach • Stream-based schema extraction • While crawling the data FIFO LOD-Crawler Instance- RDF-Dump Cache RDF Triple Store RDBMS NxParser Nquad- Schema- Parser Schema Stream Extractor SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 7 of 12
  • 8. Efficient Instance Cache • Observe a quadruple stream from LD spider • Ring queue, backed up by a hash map • Organizes triples with same subject URI • Dismiss oldest, when cache full (FIFO) → Runtime complexity O(1) SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 8 of 12
  • 9. Building the Schema and Index RDF c1 c2 c3 … ck classes consistsOf Type TC1 TC2 … TCm clusters hasEQ Class p1 p2 EQC1 EQC2 … EQCn Equivalence classes hasDataSource … Data DS1 DS2 DS3 DS4 DS5 DSx sources SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 9 of 12
  • 10. Computing SchemEX: TimBL Data Set • Analysis of a smaller data set • 11 M triples, TimBL’s FOAF profile • LDspider with ~ 2k triples / sec • Different cache sizes: 100, 1k, 10k, 50k, 100k • Compared SchemEX with reference schema • Index queries on all Types, TCs, EQCs • Good precision/recall ratio at 50k+ SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 10 of 12
  • 11. Computing SchemEX: Full BTC 2011 Data Cache size: 50 k SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 11 of 12
  • 12. Conclusions: SchemEX • Stream-based approach to schema extraction • Scalable to arbitrary amount of Linked Data • Applicable on commodity hardware (4GB RAM, standard single CPU) • Lookup-index to find relevant data sources • Support federated queries on the LOD cloud SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 12 of 12
  • 13. BACKUP SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 13 of 12
  • 14. SchemEX Computation: Window Sizes Runtime increases hardly with greater window sizes Crawled TimBL dataset Memory consumption scales (11M triples) with window size SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 14 of 12
  • 15. SchemEX Quality: Precision SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 15 of 12
  • 16. SchemEX Quality: Recall SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 16 of 12
  • 17. Example Data Graph SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 17 of 12
  • 18. Output Vocabulary: voiD SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 18 of 12
  • 19. SchemEX Extraction: Progress Plot Type-cluster Equivalence classes Count ##processed instances processed 12 instances SchemEX – Mathias Konrath, Thomas Gottron, Ansgar Scherp 19 of
  翻译: